ray/rllib/agents/dqn/tests/test_dqn.py

167 lines
6.3 KiB
Python

import copy
import numpy as np
import unittest
import ray
import ray.rllib.agents.dqn as dqn
from ray.rllib.agents.dqn.dqn_tf_policy import _adjust_nstep
from ray.rllib.utils.test_utils import check, check_compute_single_action, \
framework_iterator
class TestDQN(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_dqn_compilation(self):
"""Test whether a DQNTrainer can be built on all frameworks."""
config = dqn.DEFAULT_CONFIG.copy()
config["num_workers"] = 2
num_iterations = 1
for _ in framework_iterator(config):
# Double-dueling DQN.
print("Double-dueling")
plain_config = config.copy()
trainer = dqn.DQNTrainer(config=plain_config, env="CartPole-v0")
for i in range(num_iterations):
results = trainer.train()
print(results)
check_compute_single_action(trainer)
trainer.stop()
# Rainbow.
print("Rainbow")
rainbow_config = config.copy()
rainbow_config["num_atoms"] = 10
rainbow_config["noisy"] = True
rainbow_config["double_q"] = True
rainbow_config["dueling"] = True
rainbow_config["n_step"] = 5
trainer = dqn.DQNTrainer(config=rainbow_config, env="CartPole-v0")
for i in range(num_iterations):
results = trainer.train()
print(results)
check_compute_single_action(trainer)
trainer.stop()
def test_dqn_fake_multi_gpu_learning(self):
"""Test whether DQNTrainer can learn CartPole w/ faked multi-GPU."""
config = copy.deepcopy(dqn.DEFAULT_CONFIG)
# Fake GPU setup.
config["num_gpus"] = 2
config["_fake_gpus"] = True
config["framework"] = "tf"
# Double batch size (2 GPUs).
config["train_batch_size"] = 64
# Mimic tuned_example for DQN CartPole.
config["n_step"] = 3
config["model"]["fcnet_hiddens"] = [64]
config["model"]["fcnet_activation"] = "linear"
trainer = dqn.DQNTrainer(config=config, env="CartPole-v0")
num_iterations = 200
learnt = False
for i in range(num_iterations):
results = trainer.train()
print("reward={}".format(results["episode_reward_mean"]))
if results["episode_reward_mean"] > 100.0:
learnt = True
break
assert learnt, "DQN multi-GPU (with fake-GPUs) did not learn CartPole!"
trainer.stop()
def test_dqn_n_step(self):
obs = [1, 2, 3, 4, 5, 6, 7]
actions = ["a", "b", "a", "a", "a", "b", "a"]
rewards = [10.0, 0.0, 100.0, 100.0, 100.0, 100.0, 100.0]
new_obs = [2, 3, 4, 5, 6, 7, 8]
dones = [0, 0, 0, 0, 0, 0, 1]
_adjust_nstep(3, 0.9, obs, actions, rewards, new_obs, dones)
self.assertEqual(obs, [1, 2, 3, 4, 5, 6, 7])
self.assertEqual(actions, ["a", "b", "a", "a", "a", "b", "a"])
self.assertEqual(new_obs, [4, 5, 6, 7, 8, 8, 8])
self.assertEqual(dones, [0, 0, 0, 0, 1, 1, 1])
self.assertEqual(rewards,
[91.0, 171.0, 271.0, 271.0, 271.0, 190.0, 100.0])
def test_dqn_exploration_and_soft_q_config(self):
"""Tests, whether a DQN Agent outputs exploration/softmaxed actions."""
config = dqn.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
obs = np.array(0)
# Test against all frameworks.
for _ in framework_iterator(config):
# Default EpsilonGreedy setup.
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Setting explore=False should always return the same action.
a_ = trainer.compute_single_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_single_action(obs, explore=False)
check(a, a_)
# explore=None (default: explore) should return different actions.
actions = []
for _ in range(50):
actions.append(trainer.compute_single_action(obs))
check(np.std(actions), 0.0, false=True)
trainer.stop()
# Low softmax temperature. Behaves like argmax
# (but no epsilon exploration).
config["exploration_config"] = {
"type": "SoftQ",
"temperature": 0.000001
}
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Due to the low temp, always expect the same action.
actions = [trainer.compute_single_action(obs)]
for _ in range(50):
actions.append(trainer.compute_single_action(obs))
check(np.std(actions), 0.0, decimals=3)
trainer.stop()
# Higher softmax temperature.
config["exploration_config"]["temperature"] = 1.0
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Even with the higher temperature, if we set explore=False, we
# should expect the same actions always.
a_ = trainer.compute_single_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_single_action(obs, explore=False)
check(a, a_)
# Due to the higher temp, expect different actions avg'ing
# around 1.5.
actions = []
for _ in range(300):
actions.append(trainer.compute_single_action(obs))
check(np.std(actions), 0.0, false=True)
trainer.stop()
# With Random exploration.
config["exploration_config"] = {"type": "Random"}
config["explore"] = True
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
actions = []
for _ in range(300):
actions.append(trainer.compute_single_action(obs))
check(np.std(actions), 0.0, false=True)
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))