ray/rllib/examples/env/transformed_action_space_env.py

56 lines
2 KiB
Python

import gym
from typing import Type
class ActionTransform(gym.ActionWrapper):
def __init__(self, env, low, high):
super().__init__(env)
self._low = low
self._high = high
self.action_space = type(env.action_space)(
self._low, self._high, env.action_space.shape, env.action_space.dtype
)
def action(self, action):
return (action - self._low) / (self._high - self._low) * (
self.env.action_space.high - self.env.action_space.low
) + self.env.action_space.low
def transform_action_space(env_name_or_creator) -> Type[gym.Env]:
"""Wrapper for gym.Envs to have their action space transformed.
Args:
env_name_or_creator (Union[str, Callable[]]: String specifier or
env_maker function.
Returns:
New transformed_action_space_env function that returns an environment
wrapped by the ActionTransform wrapper. The constructor takes a
config dict with `_low` and `_high` keys specifying the new action
range (default -1.0 to 1.0). The reset of the config dict will be
passed on to the underlying/wrapped env's constructor.
Examples:
>>> # By gym string:
>>> pendulum_300_to_500_cls = transform_action_space("Pendulum-v1")
>>> # Create a transformed pendulum env.
>>> pendulum_300_to_500 = pendulum_300_to_500_cls({"_low": -15.0})
>>> pendulum_300_to_500.action_space
... gym.spaces.Box(-15.0, 1.0, (1, ), "float32")
"""
def transformed_action_space_env(config):
if isinstance(env_name_or_creator, str):
inner_env = gym.make(env_name_or_creator)
else:
inner_env = env_name_or_creator(config)
_low = config.pop("low", -1.0)
_high = config.pop("high", 1.0)
env = ActionTransform(inner_env, _low, _high)
return env
return transformed_action_space_env
TransformedActionPendulum = transform_action_space("Pendulum-v1")