mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
144 lines
5.3 KiB
Python
144 lines
5.3 KiB
Python
import gym
|
|
from gym.spaces import Box, Dict, Discrete
|
|
import numpy as np
|
|
import random
|
|
|
|
|
|
class ParametricActionsCartPole(gym.Env):
|
|
"""Parametric action version of CartPole.
|
|
|
|
In this env there are only ever two valid actions, but we pretend there are
|
|
actually up to `max_avail_actions` actions that can be taken, and the two
|
|
valid actions are randomly hidden among this set.
|
|
|
|
At each step, we emit a dict of:
|
|
- the actual cart observation
|
|
- a mask of valid actions (e.g., [0, 0, 1, 0, 0, 1] for 6 max avail)
|
|
- the list of action embeddings (w/ zeroes for invalid actions) (e.g.,
|
|
[[0, 0],
|
|
[0, 0],
|
|
[-0.2322, -0.2569],
|
|
[0, 0],
|
|
[0, 0],
|
|
[0.7878, 1.2297]] for max_avail_actions=6)
|
|
|
|
In a real environment, the actions embeddings would be larger than two
|
|
units of course, and also there would be a variable number of valid actions
|
|
per step instead of always [LEFT, RIGHT].
|
|
"""
|
|
|
|
def __init__(self, max_avail_actions):
|
|
# Use simple random 2-unit action embeddings for [LEFT, RIGHT]
|
|
self.left_action_embed = np.random.randn(2)
|
|
self.right_action_embed = np.random.randn(2)
|
|
self.action_space = Discrete(max_avail_actions)
|
|
self.wrapped = gym.make("CartPole-v0")
|
|
self.observation_space = Dict(
|
|
{
|
|
"action_mask": Box(0, 1, shape=(max_avail_actions,), dtype=np.float32),
|
|
"avail_actions": Box(-10, 10, shape=(max_avail_actions, 2)),
|
|
"cart": self.wrapped.observation_space,
|
|
}
|
|
)
|
|
self._skip_env_checking = True
|
|
|
|
def update_avail_actions(self):
|
|
self.action_assignments = np.array(
|
|
[[0.0, 0.0]] * self.action_space.n, dtype=np.float32
|
|
)
|
|
self.action_mask = np.array([0.0] * self.action_space.n, dtype=np.float32)
|
|
self.left_idx, self.right_idx = random.sample(range(self.action_space.n), 2)
|
|
self.action_assignments[self.left_idx] = self.left_action_embed
|
|
self.action_assignments[self.right_idx] = self.right_action_embed
|
|
self.action_mask[self.left_idx] = 1
|
|
self.action_mask[self.right_idx] = 1
|
|
|
|
def reset(self):
|
|
self.update_avail_actions()
|
|
return {
|
|
"action_mask": self.action_mask,
|
|
"avail_actions": self.action_assignments,
|
|
"cart": self.wrapped.reset(),
|
|
}
|
|
|
|
def step(self, action):
|
|
if action == self.left_idx:
|
|
actual_action = 0
|
|
elif action == self.right_idx:
|
|
actual_action = 1
|
|
else:
|
|
raise ValueError(
|
|
"Chosen action was not one of the non-zero action embeddings",
|
|
action,
|
|
self.action_assignments,
|
|
self.action_mask,
|
|
self.left_idx,
|
|
self.right_idx,
|
|
)
|
|
orig_obs, rew, done, info = self.wrapped.step(actual_action)
|
|
self.update_avail_actions()
|
|
self.action_mask = self.action_mask.astype(np.float32)
|
|
obs = {
|
|
"action_mask": self.action_mask,
|
|
"avail_actions": self.action_assignments,
|
|
"cart": orig_obs,
|
|
}
|
|
return obs, rew, done, info
|
|
|
|
|
|
class ParametricActionsCartPoleNoEmbeddings(gym.Env):
|
|
"""Same as the above ParametricActionsCartPole.
|
|
|
|
However, action embeddings are not published inside observations,
|
|
but will be learnt by the model.
|
|
|
|
At each step, we emit a dict of:
|
|
- the actual cart observation
|
|
- a mask of valid actions (e.g., [0, 0, 1, 0, 0, 1] for 6 max avail)
|
|
- action embeddings (w/ "dummy embedding" for invalid actions) are
|
|
outsourced in the model and will be learned.
|
|
"""
|
|
|
|
def __init__(self, max_avail_actions):
|
|
# Randomly set which two actions are valid and available.
|
|
self.left_idx, self.right_idx = random.sample(range(max_avail_actions), 2)
|
|
self.valid_avail_actions_mask = np.array(
|
|
[0.0] * max_avail_actions, dtype=np.float32
|
|
)
|
|
self.valid_avail_actions_mask[self.left_idx] = 1
|
|
self.valid_avail_actions_mask[self.right_idx] = 1
|
|
self.action_space = Discrete(max_avail_actions)
|
|
self.wrapped = gym.make("CartPole-v0")
|
|
self.observation_space = Dict(
|
|
{
|
|
"valid_avail_actions_mask": Box(0, 1, shape=(max_avail_actions,)),
|
|
"cart": self.wrapped.observation_space,
|
|
}
|
|
)
|
|
self._skip_env_checking = True
|
|
|
|
def reset(self):
|
|
return {
|
|
"valid_avail_actions_mask": self.valid_avail_actions_mask,
|
|
"cart": self.wrapped.reset(),
|
|
}
|
|
|
|
def step(self, action):
|
|
if action == self.left_idx:
|
|
actual_action = 0
|
|
elif action == self.right_idx:
|
|
actual_action = 1
|
|
else:
|
|
raise ValueError(
|
|
"Chosen action was not one of the non-zero action embeddings",
|
|
action,
|
|
self.valid_avail_actions_mask,
|
|
self.left_idx,
|
|
self.right_idx,
|
|
)
|
|
orig_obs, rew, done, info = self.wrapped.step(actual_action)
|
|
obs = {
|
|
"valid_avail_actions_mask": self.valid_avail_actions_mask,
|
|
"cart": orig_obs,
|
|
}
|
|
return obs, rew, done, info
|