ray/rllib/tests/test_multi_agent_env.py

450 lines
18 KiB
Python

import gym
import numpy as np
import random
import unittest
import ray
from ray.tune.registry import register_env
from ray.rllib.agents.dqn.dqn_tf_policy import DQNTFPolicy
from ray.rllib.agents.pg import PGTrainer
from ray.rllib.evaluation.episode import MultiAgentEpisode
from ray.rllib.evaluation.rollout_worker import get_global_worker
from ray.rllib.examples.policy.random_policy import RandomPolicy
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole, \
BasicMultiAgent, EarlyDoneMultiAgent, FlexAgentsMultiAgent, \
RoundRobinMultiAgent
from ray.rllib.evaluation.rollout_worker import RolloutWorker
from ray.rllib.evaluation.tests.test_rollout_worker import MockPolicy
from ray.rllib.env.base_env import _MultiAgentEnvToBaseEnv
from ray.rllib.policy.policy import PolicySpec
from ray.rllib.utils.numpy import one_hot
from ray.rllib.utils.test_utils import check
class TestMultiAgentEnv(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init(num_cpus=4)
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_basic_mock(self):
env = BasicMultiAgent(4)
obs = env.reset()
self.assertEqual(obs, {0: 0, 1: 0, 2: 0, 3: 0})
for _ in range(24):
obs, rew, done, info = env.step({0: 0, 1: 0, 2: 0, 3: 0})
self.assertEqual(obs, {0: 0, 1: 0, 2: 0, 3: 0})
self.assertEqual(rew, {0: 1, 1: 1, 2: 1, 3: 1})
self.assertEqual(done, {
0: False,
1: False,
2: False,
3: False,
"__all__": False
})
obs, rew, done, info = env.step({0: 0, 1: 0, 2: 0, 3: 0})
self.assertEqual(done, {
0: True,
1: True,
2: True,
3: True,
"__all__": True
})
def test_round_robin_mock(self):
env = RoundRobinMultiAgent(2)
obs = env.reset()
self.assertEqual(obs, {0: 0})
for _ in range(5):
obs, rew, done, info = env.step({0: 0})
self.assertEqual(obs, {1: 0})
self.assertEqual(done["__all__"], False)
obs, rew, done, info = env.step({1: 0})
self.assertEqual(obs, {0: 0})
self.assertEqual(done["__all__"], False)
obs, rew, done, info = env.step({0: 0})
self.assertEqual(done["__all__"], True)
def test_no_reset_until_poll(self):
env = _MultiAgentEnvToBaseEnv(lambda v: BasicMultiAgent(2), [], 1)
self.assertFalse(env.get_unwrapped()[0].resetted)
env.poll()
self.assertTrue(env.get_unwrapped()[0].resetted)
def test_vectorize_basic(self):
env = _MultiAgentEnvToBaseEnv(lambda v: BasicMultiAgent(2), [], 2)
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
self.assertEqual(rew, {0: {}, 1: {}})
self.assertEqual(dones, {
0: {
"__all__": False
},
1: {
"__all__": False
},
})
for _ in range(24):
env.send_actions({0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
self.assertEqual(rew, {0: {0: 1, 1: 1}, 1: {0: 1, 1: 1}})
self.assertEqual(
dones, {
0: {
0: False,
1: False,
"__all__": False
},
1: {
0: False,
1: False,
"__all__": False
}
})
env.send_actions({0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(
dones, {
0: {
0: True,
1: True,
"__all__": True
},
1: {
0: True,
1: True,
"__all__": True
}
})
# Reset processing
self.assertRaises(
ValueError, lambda: env.send_actions({
0: {
0: 0,
1: 0
},
1: {
0: 0,
1: 0
}
}))
self.assertEqual(env.try_reset(0), {0: 0, 1: 0})
self.assertEqual(env.try_reset(1), {0: 0, 1: 0})
env.send_actions({0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
self.assertEqual(rew, {0: {0: 1, 1: 1}, 1: {0: 1, 1: 1}})
self.assertEqual(
dones, {
0: {
0: False,
1: False,
"__all__": False
},
1: {
0: False,
1: False,
"__all__": False
}
})
def test_vectorize_round_robin(self):
env = _MultiAgentEnvToBaseEnv(lambda v: RoundRobinMultiAgent(2), [], 2)
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0}, 1: {0: 0}})
self.assertEqual(rew, {0: {}, 1: {}})
env.send_actions({0: {0: 0}, 1: {0: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {1: 0}, 1: {1: 0}})
env.send_actions({0: {1: 0}, 1: {1: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0}, 1: {0: 0}})
def test_multi_agent_sample(self):
def policy_mapping_fn(agent_id, episode, worker, **kwargs):
return "p{}".format(agent_id % 2)
ev = RolloutWorker(
env_creator=lambda _: BasicMultiAgent(5),
policy_spec={
"p0": PolicySpec(policy_class=MockPolicy),
"p1": PolicySpec(policy_class=MockPolicy),
},
policy_mapping_fn=policy_mapping_fn,
rollout_fragment_length=50)
batch = ev.sample()
self.assertEqual(batch.count, 50)
self.assertEqual(batch.policy_batches["p0"].count, 150)
self.assertEqual(batch.policy_batches["p1"].count, 100)
self.assertEqual(batch.policy_batches["p0"]["t"].tolist(),
list(range(25)) * 6)
def test_multi_agent_sample_sync_remote(self):
ev = RolloutWorker(
env_creator=lambda _: BasicMultiAgent(5),
policy_spec={
"p0": PolicySpec(policy_class=MockPolicy),
"p1": PolicySpec(policy_class=MockPolicy),
},
# This signature will raise a soft-deprecation warning due
# to the new signature we are using (agent_id, episode, **kwargs),
# but should not break this test.
policy_mapping_fn=(lambda agent_id: "p{}".format(agent_id % 2)),
rollout_fragment_length=50,
num_envs=4,
remote_worker_envs=True,
remote_env_batch_wait_ms=99999999)
batch = ev.sample()
self.assertEqual(batch.count, 200)
def test_multi_agent_sample_async_remote(self):
ev = RolloutWorker(
env_creator=lambda _: BasicMultiAgent(5),
policy_spec={
"p0": PolicySpec(policy_class=MockPolicy),
"p1": PolicySpec(policy_class=MockPolicy),
},
policy_mapping_fn=(lambda aid, **kwargs: "p{}".format(aid % 2)),
rollout_fragment_length=50,
num_envs=4,
remote_worker_envs=True)
batch = ev.sample()
self.assertEqual(batch.count, 200)
def test_multi_agent_sample_with_horizon(self):
ev = RolloutWorker(
env_creator=lambda _: BasicMultiAgent(5),
policy_spec={
"p0": PolicySpec(policy_class=MockPolicy),
"p1": PolicySpec(policy_class=MockPolicy),
},
policy_mapping_fn=(lambda aid, **kwarg: "p{}".format(aid % 2)),
episode_horizon=10, # test with episode horizon set
rollout_fragment_length=50)
batch = ev.sample()
self.assertEqual(batch.count, 50)
def test_sample_from_early_done_env(self):
ev = RolloutWorker(
env_creator=lambda _: EarlyDoneMultiAgent(),
policy_spec={
"p0": PolicySpec(policy_class=MockPolicy),
"p1": PolicySpec(policy_class=MockPolicy),
},
policy_mapping_fn=(lambda aid, **kwargs: "p{}".format(aid % 2)),
batch_mode="complete_episodes",
rollout_fragment_length=1)
# This used to raise an Error due to the EarlyDoneMultiAgent
# terminating at e.g. agent0 w/o publishing the observation for
# agent1 anymore. This limitation is fixed and an env may
# terminate at any time (as well as return rewards for any agent
# at any time, even when that agent doesn't have an obs returned
# in the same call to `step()`).
ma_batch = ev.sample()
# Make sure that agents took the correct (alternating timesteps)
# path. Except for the last timestep, where both agents got
# terminated.
ag0_ts = ma_batch.policy_batches["p0"]["t"]
ag1_ts = ma_batch.policy_batches["p1"]["t"]
self.assertTrue(np.all(np.abs(ag0_ts[:-1] - ag1_ts[:-1]) == 1.0))
self.assertTrue(ag0_ts[-1] == ag1_ts[-1])
def test_multi_agent_with_flex_agents(self):
register_env("flex_agents_multi_agent_cartpole",
lambda _: FlexAgentsMultiAgent())
pg = PGTrainer(
env="flex_agents_multi_agent_cartpole",
config={
"num_workers": 0,
"framework": "tf",
})
for i in range(10):
result = pg.train()
print("Iteration {}, reward {}, timesteps {}".format(
i, result["episode_reward_mean"], result["timesteps_total"]))
def test_multi_agent_sample_round_robin(self):
ev = RolloutWorker(
env_creator=lambda _: RoundRobinMultiAgent(5, increment_obs=True),
policy_spec={
"p0": PolicySpec(policy_class=MockPolicy),
},
policy_mapping_fn=lambda agent_id, episode, **kwargs: "p0",
rollout_fragment_length=50)
batch = ev.sample()
self.assertEqual(batch.count, 50)
# since we round robin introduce agents into the env, some of the env
# steps don't count as proper transitions
self.assertEqual(batch.policy_batches["p0"].count, 42)
check(batch.policy_batches["p0"]["obs"][:10],
one_hot(np.array([0, 1, 2, 3, 4] * 2), 10))
check(batch.policy_batches["p0"]["new_obs"][:10],
one_hot(np.array([1, 2, 3, 4, 5] * 2), 10))
self.assertEqual(batch.policy_batches["p0"]["rewards"].tolist()[:10],
[100, 100, 100, 100, 0] * 2)
self.assertEqual(batch.policy_batches["p0"]["dones"].tolist()[:10],
[False, False, False, False, True] * 2)
self.assertEqual(batch.policy_batches["p0"]["t"].tolist()[:10],
[4, 9, 14, 19, 24, 5, 10, 15, 20, 25])
def test_custom_rnn_state_values(self):
h = {"some": {"arbitrary": "structure", "here": [1, 2, 3]}}
class StatefulPolicy(RandomPolicy):
def compute_actions(self,
obs_batch,
state_batches=None,
prev_action_batch=None,
prev_reward_batch=None,
episodes=None,
explore=True,
timestep=None,
**kwargs):
return [0] * len(obs_batch), [[h] * len(obs_batch)], {}
def get_initial_state(self):
return [{}] # empty dict
ev = RolloutWorker(
env_creator=lambda _: gym.make("CartPole-v0"),
policy_spec=StatefulPolicy,
rollout_fragment_length=5)
batch = ev.sample()
self.assertEqual(batch.count, 5)
self.assertEqual(batch["state_in_0"][0], {})
self.assertEqual(batch["state_out_0"][0], h)
self.assertEqual(batch["state_in_0"][1], h)
self.assertEqual(batch["state_out_0"][1], h)
def test_returning_model_based_rollouts_data(self):
class ModelBasedPolicy(DQNTFPolicy):
def compute_actions_from_input_dict(self,
input_dict,
explore=None,
timestep=None,
episodes=None,
**kwargs):
obs_batch = input_dict["obs"]
# In policy loss initialization phase, no episodes are passed
# in.
if episodes is not None:
# Pretend we did a model-based rollout and want to return
# the extra trajectory.
env_id = episodes[0].env_id
fake_eps = MultiAgentEpisode(
episodes[0].policy_map, episodes[0].policy_mapping_fn,
lambda: None, lambda x: None, env_id)
builder = get_global_worker().sampler.sample_collector
agent_id = "extra_0"
policy_id = "p1" # use p1 so we can easily check it
builder.add_init_obs(fake_eps, agent_id, env_id, policy_id,
-1, obs_batch[0])
for t in range(4):
builder.add_action_reward_next_obs(
episode_id=fake_eps.episode_id,
agent_id=agent_id,
env_id=env_id,
policy_id=policy_id,
agent_done=t == 3,
values=dict(
t=t,
actions=0,
rewards=0,
dones=t == 3,
infos={},
new_obs=obs_batch[0]))
batch = builder.postprocess_episode(
episode=fake_eps, build=True)
episodes[0].add_extra_batch(batch)
# Just return zeros for actions
return [0] * len(obs_batch), [], {}
ev = RolloutWorker(
env_creator=lambda _: MultiAgentCartPole({"num_agents": 2}),
policy_spec={
"p0": PolicySpec(policy_class=ModelBasedPolicy),
"p1": PolicySpec(policy_class=ModelBasedPolicy),
},
policy_mapping_fn=lambda agent_id, episode, **kwargs: "p0",
rollout_fragment_length=5)
batch = ev.sample()
# 5 environment steps (rollout_fragment_length).
self.assertEqual(batch.count, 5)
# 10 agent steps for p0: 2 agents, both using p0 as their policy.
self.assertEqual(batch.policy_batches["p0"].count, 10)
# 20 agent steps for p1: Each time both(!) agents takes 1 step,
# p1 takes 4: 5 (rollout-fragment length) * 4 = 20
self.assertEqual(batch.policy_batches["p1"].count, 20)
def test_train_multi_agent_cartpole_single_policy(self):
n = 10
register_env("multi_agent_cartpole",
lambda _: MultiAgentCartPole({"num_agents": n}))
pg = PGTrainer(
env="multi_agent_cartpole",
config={
"num_workers": 0,
"framework": "tf",
})
for i in range(50):
result = pg.train()
print("Iteration {}, reward {}, timesteps {}".format(
i, result["episode_reward_mean"], result["timesteps_total"]))
if result["episode_reward_mean"] >= 50 * n:
return
raise Exception("failed to improve reward")
def test_train_multi_agent_cartpole_multi_policy(self):
n = 10
register_env("multi_agent_cartpole",
lambda _: MultiAgentCartPole({"num_agents": n}))
def gen_policy():
config = {
"gamma": random.choice([0.5, 0.8, 0.9, 0.95, 0.99]),
"n_step": random.choice([1, 2, 3, 4, 5]),
}
return PolicySpec(config=config)
pg = PGTrainer(
env="multi_agent_cartpole",
config={
"num_workers": 0,
"multiagent": {
"policies": {
"policy_1": gen_policy(),
"policy_2": gen_policy(),
},
"policy_mapping_fn": lambda aid, **kwargs: "policy_1",
},
"framework": "tf",
})
# Just check that it runs without crashing
for i in range(10):
result = pg.train()
print("Iteration {}, reward {}, timesteps {}".format(
i, result["episode_reward_mean"], result["timesteps_total"]))
self.assertTrue(
pg.compute_single_action([0, 0, 0, 0], policy_id="policy_1") in
[0, 1])
self.assertTrue(
pg.compute_single_action([0, 0, 0, 0], policy_id="policy_2") in
[0, 1])
self.assertRaisesRegex(
KeyError,
"not found in PolicyMap",
lambda: pg.compute_single_action(
[0, 0, 0, 0], policy_id="policy_3"))
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))