mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
38 lines
1.1 KiB
YAML
38 lines
1.1 KiB
YAML
# Pendulum SAC can attain -150+ reward in 6-7k
|
|
# Configurations are the similar to original softlearning/sac codebase
|
|
pendulum-sac:
|
|
env: Pendulum-v0
|
|
run: SAC
|
|
stop:
|
|
episode_reward_mean: -600
|
|
timesteps_total: 10000
|
|
config:
|
|
# Works for both torch and tf.
|
|
framework: tf
|
|
horizon: 200
|
|
soft_horizon: true
|
|
Q_model:
|
|
fcnet_activation: relu
|
|
fcnet_hiddens: [256, 256]
|
|
policy_model:
|
|
fcnet_activation: relu
|
|
fcnet_hiddens: [256, 256]
|
|
tau: 0.005
|
|
target_entropy: auto
|
|
no_done_at_end: true
|
|
n_step: 3
|
|
rollout_fragment_length: 1
|
|
prioritized_replay: true
|
|
train_batch_size: 256
|
|
target_network_update_freq: 1
|
|
timesteps_per_iteration: 1000
|
|
learning_starts: 256
|
|
optimization:
|
|
actor_learning_rate: 0.0003
|
|
critic_learning_rate: 0.0003
|
|
entropy_learning_rate: 0.0003
|
|
num_workers: 0
|
|
num_gpus: 0
|
|
clip_actions: false
|
|
normalize_actions: true
|
|
metrics_smoothing_episodes: 5
|