ray/rllib/tuned_examples/sac/pendulum-sac.yaml

38 lines
1.1 KiB
YAML

# Pendulum SAC can attain -150+ reward in 6-7k
# Configurations are the similar to original softlearning/sac codebase
pendulum-sac:
env: Pendulum-v0
run: SAC
stop:
episode_reward_mean: -600
timesteps_total: 10000
config:
# Works for both torch and tf.
framework: tf
horizon: 200
soft_horizon: true
Q_model:
fcnet_activation: relu
fcnet_hiddens: [256, 256]
policy_model:
fcnet_activation: relu
fcnet_hiddens: [256, 256]
tau: 0.005
target_entropy: auto
no_done_at_end: true
n_step: 3
rollout_fragment_length: 1
prioritized_replay: true
train_batch_size: 256
target_network_update_freq: 1
timesteps_per_iteration: 1000
learning_starts: 256
optimization:
actor_learning_rate: 0.0003
critic_learning_rate: 0.0003
entropy_learning_rate: 0.0003
num_workers: 0
num_gpus: 0
clip_actions: false
normalize_actions: true
metrics_smoothing_episodes: 5