ray/rllib/models/jax/fcnet.py

125 lines
4.7 KiB
Python

import logging
import numpy as np
import time
from ray.rllib.models.jax.jax_modelv2 import JAXModelV2
from ray.rllib.models.jax.misc import SlimFC
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_jax
jax, flax = try_import_jax()
logger = logging.getLogger(__name__)
class FullyConnectedNetwork(JAXModelV2):
"""Generic fully connected network."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super().__init__(obs_space, action_space, num_outputs, model_config,
name)
self.key = jax.random.PRNGKey(int(time.time()))
activation = model_config.get("fcnet_activation")
hiddens = model_config.get("fcnet_hiddens", [])
no_final_linear = model_config.get("no_final_linear")
self.vf_share_layers = model_config.get("vf_share_layers")
self.free_log_std = model_config.get("free_log_std")
# Generate free-floating bias variables for the second half of
# the outputs.
if self.free_log_std:
assert num_outputs % 2 == 0, (
"num_outputs must be divisible by two", num_outputs)
num_outputs = num_outputs // 2
self._hidden_layers = []
prev_layer_size = int(np.product(obs_space.shape))
self._logits = None
# Create layers 0 to second-last.
for size in hiddens[:-1]:
self._hidden_layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=size,
activation_fn=activation))
prev_layer_size = size
# The last layer is adjusted to be of size num_outputs, but it's a
# layer with activation.
if no_final_linear and num_outputs:
self._hidden_layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=num_outputs,
activation_fn=activation))
prev_layer_size = num_outputs
# Finish the layers with the provided sizes (`hiddens`), plus -
# iff num_outputs > 0 - a last linear layer of size num_outputs.
else:
if len(hiddens) > 0:
self._hidden_layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=hiddens[-1],
activation_fn=activation))
prev_layer_size = hiddens[-1]
if num_outputs:
self._logits = SlimFC(
in_size=prev_layer_size,
out_size=num_outputs,
activation_fn=None)
else:
self.num_outputs = (
[int(np.product(obs_space.shape))] + hiddens[-1:])[-1]
# Layer to add the log std vars to the state-dependent means.
if self.free_log_std and self._logits:
raise ValueError("`free_log_std` not supported for JAX yet!")
self._value_branch_separate = None
if not self.vf_share_layers:
# Build a parallel set of hidden layers for the value net.
prev_vf_layer_size = int(np.product(obs_space.shape))
vf_layers = []
for size in hiddens:
vf_layers.append(
SlimFC(
in_size=prev_vf_layer_size,
out_size=size,
activation_fn=activation,
))
prev_vf_layer_size = size
self._value_branch_separate = vf_layers
self._value_branch = SlimFC(
in_size=prev_layer_size, out_size=1, activation_fn=None)
# Holds the current "base" output (before logits layer).
self._features = None
# Holds the last input, in case value branch is separate.
self._last_flat_in = None
@override(JAXModelV2)
def forward(self, input_dict, state, seq_lens):
self._last_flat_in = input_dict["obs_flat"]
x = self._last_flat_in
for layer in self._hidden_layers:
x = layer(x)
self._features = x
logits = self._logits(self._features) if self._logits else \
self._features
if self.free_log_std:
logits = self._append_free_log_std(logits)
return logits, state
@override(JAXModelV2)
def value_function(self):
assert self._features is not None, "must call forward() first"
if self._value_branch_separate:
return self._value_branch(
self._value_branch_separate(self._last_flat_in)).squeeze(1)
else:
return self._value_branch(self._features).squeeze(1)