ray/rllib/algorithms/ppo/ppo_tf_policy.py

238 lines
8.7 KiB
Python

"""
TensorFlow policy class used for PPO.
"""
import logging
from typing import Dict, List, Type, Union
import ray
from ray.rllib.evaluation.postprocessing import (
Postprocessing,
compute_gae_for_sample_batch,
)
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.tf_action_dist import TFActionDistribution
from ray.rllib.policy.dynamic_tf_policy_v2 import DynamicTFPolicyV2
from ray.rllib.policy.eager_tf_policy_v2 import EagerTFPolicyV2
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.tf_mixins import (
EntropyCoeffSchedule,
KLCoeffMixin,
LearningRateSchedule,
ValueNetworkMixin,
)
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.tf_utils import explained_variance, warn_if_infinite_kl_divergence
from ray.rllib.utils.typing import AlgorithmConfigDict, TensorType, TFPolicyV2Type
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
def validate_config(config: AlgorithmConfigDict) -> None:
"""Executed before Policy is "initialized" (at beginning of constructor).
Args:
config: The Policy's config.
"""
# If vf_share_layers is True, inform about the need to tune vf_loss_coeff.
if config.get("model", {}).get("vf_share_layers") is True:
logger.info(
"`vf_share_layers=True` in your model. "
"Therefore, remember to tune the value of `vf_loss_coeff`!"
)
# We need this builder function because we want to share the same
# custom logics between TF1 dynamic and TF2 eager policies.
def get_ppo_tf_policy(name: str, base: TFPolicyV2Type) -> TFPolicyV2Type:
"""Construct a PPOTFPolicy inheriting either dynamic or eager base policies.
Args:
base: Base class for this policy. DynamicTFPolicyV2 or EagerTFPolicyV2.
Returns:
A TF Policy to be used with PPO.
"""
class PPOTFPolicy(
EntropyCoeffSchedule,
LearningRateSchedule,
KLCoeffMixin,
ValueNetworkMixin,
base,
):
def __init__(
self,
obs_space,
action_space,
config,
existing_model=None,
existing_inputs=None,
):
# First thing first, enable eager execution if necessary.
base.enable_eager_execution_if_necessary()
config = dict(ray.rllib.algorithms.ppo.ppo.PPOConfig().to_dict(), **config)
# TODO: Move into Policy API, if needed at all here. Why not move this into
# `PPOConfig`?.
validate_config(config)
# Initialize base class.
base.__init__(
self,
obs_space,
action_space,
config,
existing_inputs=existing_inputs,
existing_model=existing_model,
)
# Initialize MixIns.
ValueNetworkMixin.__init__(self, config)
KLCoeffMixin.__init__(self, config)
EntropyCoeffSchedule.__init__(
self, config["entropy_coeff"], config["entropy_coeff_schedule"]
)
LearningRateSchedule.__init__(self, config["lr"], config["lr_schedule"])
# Note: this is a bit ugly, but loss and optimizer initialization must
# happen after all the MixIns are initialized.
self.maybe_initialize_optimizer_and_loss()
@override(base)
def loss(
self,
model: Union[ModelV2, "tf.keras.Model"],
dist_class: Type[TFActionDistribution],
train_batch: SampleBatch,
) -> Union[TensorType, List[TensorType]]:
if isinstance(model, tf.keras.Model):
logits, state, extra_outs = model(train_batch)
value_fn_out = extra_outs[SampleBatch.VF_PREDS]
else:
logits, state = model(train_batch)
value_fn_out = model.value_function()
curr_action_dist = dist_class(logits, model)
# RNN case: Mask away 0-padded chunks at end of time axis.
if state:
# Derive max_seq_len from the data itself, not from the seq_lens
# tensor. This is in case e.g. seq_lens=[2, 3], but the data is still
# 0-padded up to T=5 (as it's the case for attention nets).
B = tf.shape(train_batch[SampleBatch.SEQ_LENS])[0]
max_seq_len = tf.shape(logits)[0] // B
mask = tf.sequence_mask(train_batch[SampleBatch.SEQ_LENS], max_seq_len)
mask = tf.reshape(mask, [-1])
def reduce_mean_valid(t):
return tf.reduce_mean(tf.boolean_mask(t, mask))
# non-RNN case: No masking.
else:
mask = None
reduce_mean_valid = tf.reduce_mean
prev_action_dist = dist_class(
train_batch[SampleBatch.ACTION_DIST_INPUTS], model
)
logp_ratio = tf.exp(
curr_action_dist.logp(train_batch[SampleBatch.ACTIONS])
- train_batch[SampleBatch.ACTION_LOGP]
)
# Only calculate kl loss if necessary (kl-coeff > 0.0).
if self.config["kl_coeff"] > 0.0:
action_kl = prev_action_dist.kl(curr_action_dist)
mean_kl_loss = reduce_mean_valid(action_kl)
warn_if_infinite_kl_divergence(self, mean_kl_loss)
else:
mean_kl_loss = tf.constant(0.0)
curr_entropy = curr_action_dist.entropy()
mean_entropy = reduce_mean_valid(curr_entropy)
surrogate_loss = tf.minimum(
train_batch[Postprocessing.ADVANTAGES] * logp_ratio,
train_batch[Postprocessing.ADVANTAGES]
* tf.clip_by_value(
logp_ratio,
1 - self.config["clip_param"],
1 + self.config["clip_param"],
),
)
mean_policy_loss = reduce_mean_valid(-surrogate_loss)
# Compute a value function loss.
if self.config["use_critic"]:
vf_loss = tf.math.square(
value_fn_out - train_batch[Postprocessing.VALUE_TARGETS]
)
vf_loss_clipped = tf.clip_by_value(
vf_loss,
0,
self.config["vf_clip_param"],
)
mean_vf_loss = reduce_mean_valid(vf_loss_clipped)
# Ignore the value function.
else:
vf_loss_clipped = mean_vf_loss = tf.constant(0.0)
total_loss = reduce_mean_valid(
-surrogate_loss
+ self.config["vf_loss_coeff"] * vf_loss_clipped
- self.entropy_coeff * curr_entropy
)
# Add mean_kl_loss (already processed through `reduce_mean_valid`),
# if necessary.
if self.config["kl_coeff"] > 0.0:
total_loss += self.kl_coeff * mean_kl_loss
# Store stats in policy for stats_fn.
self._total_loss = total_loss
self._mean_policy_loss = mean_policy_loss
self._mean_vf_loss = mean_vf_loss
self._mean_entropy = mean_entropy
# Backward compatibility: Deprecate self._mean_kl.
self._mean_kl_loss = self._mean_kl = mean_kl_loss
self._value_fn_out = value_fn_out
return total_loss
@override(base)
def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]:
return {
"cur_kl_coeff": tf.cast(self.kl_coeff, tf.float64),
"cur_lr": tf.cast(self.cur_lr, tf.float64),
"total_loss": self._total_loss,
"policy_loss": self._mean_policy_loss,
"vf_loss": self._mean_vf_loss,
"vf_explained_var": explained_variance(
train_batch[Postprocessing.VALUE_TARGETS], self._value_fn_out
),
"kl": self._mean_kl_loss,
"entropy": self._mean_entropy,
"entropy_coeff": tf.cast(self.entropy_coeff, tf.float64),
}
@override(base)
def postprocess_trajectory(
self, sample_batch, other_agent_batches=None, episode=None
):
sample_batch = super().postprocess_trajectory(sample_batch)
return compute_gae_for_sample_batch(
self, sample_batch, other_agent_batches, episode
)
PPOTFPolicy.__name__ = name
PPOTFPolicy.__qualname__ = name
return PPOTFPolicy
PPOTF1Policy = get_ppo_tf_policy("PPOTF1Policy", DynamicTFPolicyV2)
PPOTF2Policy = get_ppo_tf_policy("PPOTF2Policy", EagerTFPolicyV2)