ray/rllib/algorithms/alpha_zero/alpha_zero.py

437 lines
17 KiB
Python

import logging
from typing import List, Optional, Type, Union
from ray.rllib.algorithms.callbacks import DefaultCallbacks
from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.algorithms.algorithm_config import AlgorithmConfig
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.execution.replay_ops import (
SimpleReplayBuffer,
Replay,
StoreToReplayBuffer,
WaitUntilTimestepsElapsed,
)
from ray.rllib.execution.rollout_ops import (
ParallelRollouts,
ConcatBatches,
synchronous_parallel_sample,
)
from ray.rllib.execution.concurrency_ops import Concurrently
from ray.rllib.execution.train_ops import (
multi_gpu_train_one_step,
train_one_step,
TrainOneStep,
)
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.modelv2 import restore_original_dimensions
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import concat_samples
from ray.rllib.utils.annotations import Deprecated, override
from ray.rllib.utils.deprecation import DEPRECATED_VALUE
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.metrics import (
NUM_AGENT_STEPS_SAMPLED,
NUM_ENV_STEPS_SAMPLED,
SYNCH_WORKER_WEIGHTS_TIMER,
)
from ray.rllib.utils.replay_buffers.utils import validate_buffer_config
from ray.rllib.utils.typing import ResultDict, AlgorithmConfigDict
from ray.util.iter import LocalIterator
from ray.rllib.algorithms.alpha_zero.alpha_zero_policy import AlphaZeroPolicy
from ray.rllib.algorithms.alpha_zero.mcts import MCTS
from ray.rllib.algorithms.alpha_zero.ranked_rewards import get_r2_env_wrapper
torch, nn = try_import_torch()
logger = logging.getLogger(__name__)
class AlphaZeroDefaultCallbacks(DefaultCallbacks):
"""AlphaZero callbacks.
If you use custom callbacks, you must extend this class and call super()
for on_episode_start.
"""
def on_episode_start(self, worker, base_env, policies, episode, **kwargs):
# save env state when an episode starts
env = base_env.get_sub_environments()[0]
state = env.get_state()
episode.user_data["initial_state"] = state
class AlphaZeroConfig(AlgorithmConfig):
"""Defines a configuration class from which an AlphaZero Algorithm can be built.
Example:
>>> from ray.rllib.algorithms.alpha_zero import AlphaZeroConfig
>>> config = AlphaZeroConfig().training(sgd_minibatch_size=256)\
... .resources(num_gpus=0)\
... .rollouts(num_workers=4)
>>> print(config.to_dict())
>>> # Build a Algorithm object from the config and run 1 training iteration.
>>> trainer = config.build(env="CartPole-v1")
>>> trainer.train()
Example:
>>> from ray.rllib.algorithms.alpha_zero import AlphaZeroConfig
>>> from ray import tune
>>> config = AlphaZeroConfig()
>>> # Print out some default values.
>>> print(config.shuffle_sequences)
>>> # Update the config object.
>>> config.training(lr=tune.grid_search([0.001, 0.0001]))
>>> # Set the config object's env.
>>> config.environment(env="CartPole-v1")
>>> # Use to_dict() to get the old-style python config dict
>>> # when running with tune.
>>> tune.run(
... "AlphaZero",
... stop={"episode_reward_mean": 200},
... config=config.to_dict(),
... )
"""
def __init__(self, algo_class=None):
"""Initializes a PPOConfig instance."""
super().__init__(algo_class=algo_class or AlphaZero)
# fmt: off
# __sphinx_doc_begin__
# AlphaZero specific config settings:
self.sgd_minibatch_size = 128
self.shuffle_sequences = True
self.num_sgd_iter = 30
self.learning_starts = 1000
self.replay_buffer_config = {
"type": "ReplayBuffer",
# Size of the replay buffer in batches (not timesteps!).
"capacity": 1000,
# When to start returning samples (in batches, not timesteps!).
"learning_starts": 500,
# Choosing `fragments` here makes it so that the buffer stores entire
# batches, instead of sequences, episodes or timesteps.
"storage_unit": "fragments",
}
self.lr_schedule = None
self.vf_share_layers = False
self.mcts_config = {
"puct_coefficient": 1.0,
"num_simulations": 30,
"temperature": 1.5,
"dirichlet_epsilon": 0.25,
"dirichlet_noise": 0.03,
"argmax_tree_policy": False,
"add_dirichlet_noise": True,
}
self.ranked_rewards = {
"enable": True,
"percentile": 75,
"buffer_max_length": 1000,
# add rewards obtained from random policy to
# "warm start" the buffer
"initialize_buffer": True,
"num_init_rewards": 100,
}
# Override some of AlgorithmConfig's default values with AlphaZero-specific
# values.
self.framework_str = "torch"
self.callbacks_class = AlphaZeroDefaultCallbacks
self.lr = 5e-5
self.rollout_fragment_length = 200
self.train_batch_size = 4000
self.batch_mode = "complete_episodes"
# Extra configuration that disables exploration.
self.evaluation_config = {
"mcts_config": {
"argmax_tree_policy": True,
"add_dirichlet_noise": False,
},
}
# __sphinx_doc_end__
# fmt: on
self.buffer_size = DEPRECATED_VALUE
@override(AlgorithmConfig)
def training(
self,
*,
sgd_minibatch_size: Optional[int] = None,
shuffle_sequences: Optional[bool] = None,
num_sgd_iter: Optional[int] = None,
replay_buffer_config: Optional[dict] = None,
lr_schedule: Optional[List[List[Union[int, float]]]] = None,
vf_share_layers: Optional[bool] = None,
mcts_config: Optional[dict] = None,
ranked_rewards: Optional[dict] = None,
**kwargs,
) -> "AlphaZeroConfig":
"""Sets the training related configuration.
Args:
sgd_minibatch_size: Total SGD batch size across all devices for SGD.
shuffle_sequences: Whether to shuffle sequences in the batch when training
(recommended).
num_sgd_iter: Number of SGD iterations in each outer loop.
replay_buffer_config: Replay buffer config.
Examples:
{
"_enable_replay_buffer_api": True,
"type": "MultiAgentReplayBuffer",
"learning_starts": 1000,
"capacity": 50000,
"replay_sequence_length": 1,
}
- OR -
{
"_enable_replay_buffer_api": True,
"type": "MultiAgentPrioritizedReplayBuffer",
"capacity": 50000,
"prioritized_replay_alpha": 0.6,
"prioritized_replay_beta": 0.4,
"prioritized_replay_eps": 1e-6,
"replay_sequence_length": 1,
}
- Where -
prioritized_replay_alpha: Alpha parameter controls the degree of
prioritization in the buffer. In other words, when a buffer sample has
a higher temporal-difference error, with how much more probability
should it drawn to use to update the parametrized Q-network. 0.0
corresponds to uniform probability. Setting much above 1.0 may quickly
result as the sampling distribution could become heavily “pointy” with
low entropy.
prioritized_replay_beta: Beta parameter controls the degree of
importance sampling which suppresses the influence of gradient updates
from samples that have higher probability of being sampled via alpha
parameter and the temporal-difference error.
prioritized_replay_eps: Epsilon parameter sets the baseline probability
for sampling so that when the temporal-difference error of a sample is
zero, there is still a chance of drawing the sample.
lr_schedule: Learning rate schedule. In the format of
[[timestep, lr-value], [timestep, lr-value], ...]
Intermediary timesteps will be assigned to interpolated learning rate
values. A schedule should normally start from timestep 0.
vf_share_layers: Share layers for value function. If you set this to True,
it's important to tune vf_loss_coeff.
mcts_config: MCTS specific settings.
ranked_rewards: Settings for the ranked reward (r2) algorithm
from: https://arxiv.org/pdf/1807.01672.pdf
Returns:
This updated AlgorithmConfig object.
"""
# Pass kwargs onto super's `training()` method.
super().training(**kwargs)
if sgd_minibatch_size is not None:
self.sgd_minibatch_size = sgd_minibatch_size
if shuffle_sequences is not None:
self.shuffle_sequences = shuffle_sequences
if num_sgd_iter is not None:
self.num_sgd_iter = num_sgd_iter
if replay_buffer_config is not None:
self.replay_buffer_config = replay_buffer_config
if lr_schedule is not None:
self.lr_schedule = lr_schedule
if vf_share_layers is not None:
self.vf_share_layers = vf_share_layers
if mcts_config is not None:
self.mcts_config = mcts_config
if ranked_rewards is not None:
self.ranked_rewards = ranked_rewards
return self
def alpha_zero_loss(policy, model, dist_class, train_batch):
# get inputs unflattened inputs
input_dict = restore_original_dimensions(
train_batch["obs"], policy.observation_space, "torch"
)
# forward pass in model
model_out = model.forward(input_dict, None, [1])
logits, _ = model_out
values = model.value_function()
logits, values = torch.squeeze(logits), torch.squeeze(values)
priors = nn.Softmax(dim=-1)(logits)
# compute actor and critic losses
policy_loss = torch.mean(
-torch.sum(train_batch["mcts_policies"] * torch.log(priors), dim=-1)
)
value_loss = torch.mean(torch.pow(values - train_batch["value_label"], 2))
# compute total loss
total_loss = (policy_loss + value_loss) / 2
return total_loss, policy_loss, value_loss
class AlphaZeroPolicyWrapperClass(AlphaZeroPolicy):
def __init__(self, obs_space, action_space, config):
model = ModelCatalog.get_model_v2(
obs_space, action_space, action_space.n, config["model"], "torch"
)
_, env_creator = Algorithm._get_env_id_and_creator(config["env"], config)
if config["ranked_rewards"]["enable"]:
# if r2 is enabled, tne env is wrapped to include a rewards buffer
# used to normalize rewards
env_cls = get_r2_env_wrapper(env_creator, config["ranked_rewards"])
# the wrapped env is used only in the mcts, not in the
# rollout workers
def _env_creator():
return env_cls(config["env_config"])
else:
def _env_creator():
return env_creator(config["env_config"])
def mcts_creator():
return MCTS(model, config["mcts_config"])
super().__init__(
obs_space,
action_space,
config,
model,
alpha_zero_loss,
TorchCategorical,
mcts_creator,
_env_creator,
)
class AlphaZero(Algorithm):
@classmethod
@override(Algorithm)
def get_default_config(cls) -> AlgorithmConfigDict:
return AlphaZeroConfig().to_dict()
def validate_config(self, config: AlgorithmConfigDict) -> None:
"""Checks and updates the config based on settings."""
# Call super's validation method.
super().validate_config(config)
validate_buffer_config(config)
@override(Algorithm)
def get_default_policy_class(self, config: AlgorithmConfigDict) -> Type[Policy]:
return AlphaZeroPolicyWrapperClass
@override(Algorithm)
def training_step(self) -> ResultDict:
"""TODO:
Returns:
The results dict from executing the training iteration.
"""
# Sample n MultiAgentBatches from n workers.
new_sample_batches = synchronous_parallel_sample(
worker_set=self.workers, concat=False
)
for batch in new_sample_batches:
# Update sampling step counters.
self._counters[NUM_ENV_STEPS_SAMPLED] += batch.env_steps()
self._counters[NUM_AGENT_STEPS_SAMPLED] += batch.agent_steps()
# Store new samples in the replay buffer
# Use deprecated add_batch() to support old replay buffers for now
if self.local_replay_buffer is not None:
self.local_replay_buffer.add(batch)
if self.local_replay_buffer is not None:
train_batch = self.local_replay_buffer.sample(
self.config["train_batch_size"]
)
else:
train_batch = concat_samples(new_sample_batches)
# Learn on the training batch.
# Use simple optimizer (only for multi-agent or tf-eager; all other
# cases should use the multi-GPU optimizer, even if only using 1 GPU)
train_results = {}
if train_batch is not None:
if self.config.get("simple_optimizer") is True:
train_results = train_one_step(self, train_batch)
else:
train_results = multi_gpu_train_one_step(self, train_batch)
# TODO: Move training steps counter update outside of `train_one_step()` method.
# # Update train step counters.
# self._counters[NUM_ENV_STEPS_TRAINED] += train_batch.env_steps()
# self._counters[NUM_AGENT_STEPS_TRAINED] += train_batch.agent_steps()
# Update weights and global_vars - after learning on the local worker - on all
# remote workers.
global_vars = {
"timestep": self._counters[NUM_ENV_STEPS_SAMPLED],
}
with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]:
self.workers.sync_weights(global_vars=global_vars)
# Return all collected metrics for the iteration.
return train_results
@staticmethod
@override(Algorithm)
def execution_plan(
workers: WorkerSet, config: AlgorithmConfigDict, **kwargs
) -> LocalIterator[dict]:
assert (
len(kwargs) == 0
), "Alpha zero execution_plan does NOT take any additional parameters"
rollouts = ParallelRollouts(workers, mode="bulk_sync")
if config["simple_optimizer"]:
train_op = rollouts.combine(
ConcatBatches(
min_batch_size=config["train_batch_size"],
count_steps_by=config["multiagent"]["count_steps_by"],
)
).for_each(TrainOneStep(workers, num_sgd_iter=config["num_sgd_iter"]))
else:
replay_buffer = SimpleReplayBuffer(config["buffer_size"])
store_op = rollouts.for_each(
StoreToReplayBuffer(local_buffer=replay_buffer)
)
replay_op = (
Replay(local_buffer=replay_buffer)
.filter(WaitUntilTimestepsElapsed(config["learning_starts"]))
.combine(
ConcatBatches(
min_batch_size=config["train_batch_size"],
count_steps_by=config["multiagent"]["count_steps_by"],
)
)
.for_each(TrainOneStep(workers, num_sgd_iter=config["num_sgd_iter"]))
)
train_op = Concurrently(
[store_op, replay_op], mode="round_robin", output_indexes=[1]
)
return StandardMetricsReporting(train_op, workers, config)
# Deprecated: Use ray.rllib.algorithms.alpha_zero.AlphaZeroConfig instead!
class _deprecated_default_config(dict):
def __init__(self):
super().__init__(AlphaZeroConfig().to_dict())
@Deprecated(
old="ray.rllib.algorithms.alpha_zero.alpha_zero.DEFAULT_CONFIG",
new="ray.rllib.algorithms.alpha_zero.alpha_zero.AlphaZeroConfig(...)",
error=False,
)
def __getitem__(self, item):
return super().__getitem__(item)
DEFAULT_CONFIG = _deprecated_default_config()