ray/rllib/agents/a3c/a2c.py

92 lines
3.6 KiB
Python

import math
from ray.util.iter import LocalIterator
from ray.rllib.agents.a3c.a3c import DEFAULT_CONFIG as A3C_CONFIG, \
validate_config, get_policy_class
from ray.rllib.agents.a3c.a3c_tf_policy import A3CTFPolicy
from ray.rllib.agents.trainer_template import build_trainer
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.execution.rollout_ops import ParallelRollouts, ConcatBatches
from ray.rllib.execution.train_ops import ComputeGradients, AverageGradients, \
ApplyGradients, MultiGPUTrainOneStep, TrainOneStep
from ray.rllib.utils import merge_dicts
from ray.rllib.utils.typing import TrainerConfigDict
from ray.rllib.evaluation.worker_set import WorkerSet
A2C_DEFAULT_CONFIG = merge_dicts(
A3C_CONFIG,
{
"rollout_fragment_length": 20,
"min_iter_time_s": 10,
"sample_async": False,
# A2C supports microbatching, in which we accumulate gradients over
# batch of this size until the train batch size is reached. This allows
# training with batch sizes much larger than can fit in GPU memory.
# To enable, set this to a value less than the train batch size.
"microbatch_size": None,
},
)
def execution_plan(workers: WorkerSet,
config: TrainerConfigDict) -> LocalIterator[dict]:
"""Execution plan of the A2C algorithm. Defines the distributed
dataflow.
Args:
workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
of the Trainer.
config (TrainerConfigDict): The trainer's configuration dict.
Returns:
LocalIterator[dict]: A local iterator over training metrics.
"""
rollouts = ParallelRollouts(workers, mode="bulk_sync")
if config["microbatch_size"]:
num_microbatches = math.ceil(
config["train_batch_size"] / config["microbatch_size"])
# In microbatch mode, we want to compute gradients on experience
# microbatches, average a number of these microbatches, and then apply
# the averaged gradient in one SGD step. This conserves GPU memory,
# allowing for extremely large experience batches to be used.
train_op = (
rollouts.combine(
ConcatBatches(
min_batch_size=config["microbatch_size"],
count_steps_by=config["multiagent"]["count_steps_by"]))
.for_each(ComputeGradients(workers)) # (grads, info)
.batch(num_microbatches) # List[(grads, info)]
.for_each(AverageGradients()) # (avg_grads, info)
.for_each(ApplyGradients(workers)))
else:
# In normal mode, we execute one SGD step per each train batch.
if config["simple_optimizer"]:
train_step_op = TrainOneStep(workers)
else:
train_step_op = MultiGPUTrainOneStep(
workers=workers,
sgd_minibatch_size=config["train_batch_size"],
num_sgd_iter=1,
num_gpus=config["num_gpus"],
shuffle_sequences=True,
_fake_gpus=config["_fake_gpus"],
framework=config.get("framework"))
train_op = rollouts.combine(
ConcatBatches(
min_batch_size=config["train_batch_size"],
count_steps_by=config["multiagent"][
"count_steps_by"])).for_each(train_step_op)
return StandardMetricsReporting(train_op, workers, config)
A2CTrainer = build_trainer(
name="A2C",
default_config=A2C_DEFAULT_CONFIG,
default_policy=A3CTFPolicy,
get_policy_class=get_policy_class,
validate_config=validate_config,
execution_plan=execution_plan)