ray/release/long_running_tests/workloads/many_ppo.py

41 lines
1.1 KiB
Python

# This workload tests running many instances of PPO (many actors)
# This covers https://github.com/ray-project/ray/pull/12148
import ray
from ray.tune import run_experiments
from ray.tune.utils.release_test_util import ProgressCallback
num_redis_shards = 5
redis_max_memory = 10**8
object_store_memory = 10**9
num_nodes = 3
message = ("Make sure there is enough memory on this machine to run this "
"workload. We divide the system memory by 2 to provide a buffer.")
assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory <
ray._private.utils.get_system_memory() / 2), message
# Simulate a cluster on one machine.
ray.init(address="auto")
# Run the workload.
run_experiments(
{
"ppo": {
"run": "PPO",
"env": "CartPole-v0",
"num_samples": 10000,
"config": {
"framework": "torch",
"num_workers": 7,
"num_gpus": 0,
"num_sgd_iter": 1,
},
"stop": {
"timesteps_total": 1,
},
}
},
callbacks=[ProgressCallback()])