ray/rllib/models/torch/modules/relative_multi_head_attention.py

175 lines
6.1 KiB
Python

from typing import Union
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.models.torch.misc import SlimFC
from ray.rllib.utils.torch_utils import sequence_mask
from ray.rllib.utils.typing import TensorType
torch, nn = try_import_torch()
class RelativePositionEmbedding(nn.Module):
"""Creates a [seq_length x seq_length] matrix for rel. pos encoding.
Denoted as Phi in [2] and [3]. Phi is the standard sinusoid encoding
matrix.
Args:
seq_length: The max. sequence length (time axis).
out_dim: The number of nodes to go into the first Tranformer
layer with.
Returns:
torch.Tensor: The encoding matrix Phi.
"""
def __init__(self, out_dim, **kwargs):
super().__init__()
self.out_dim = out_dim
out_range = torch.arange(0, self.out_dim, 2.0)
inverse_freq = 1 / (10000 ** (out_range / self.out_dim))
self.register_buffer("inverse_freq", inverse_freq)
def forward(self, seq_length):
pos_input = torch.arange(seq_length - 1, -1, -1.0, dtype=torch.float).to(
self.inverse_freq.device
)
sinusoid_input = torch.einsum("i,j->ij", pos_input, self.inverse_freq)
pos_embeddings = torch.cat(
[torch.sin(sinusoid_input), torch.cos(sinusoid_input)], dim=-1
)
return pos_embeddings[:, None, :]
class RelativeMultiHeadAttention(nn.Module):
"""A RelativeMultiHeadAttention layer as described in [3].
Uses segment level recurrence with state reuse.
"""
def __init__(
self,
in_dim: int,
out_dim: int,
num_heads: int,
head_dim: int,
input_layernorm: bool = False,
output_activation: Union[str, callable] = None,
**kwargs
):
"""Initializes a RelativeMultiHeadAttention nn.Module object.
Args:
in_dim (int):
out_dim: The output dimension of this module. Also known as
"attention dim".
num_heads: The number of attention heads to use.
Denoted `H` in [2].
head_dim: The dimension of a single(!) attention head
Denoted `D` in [2].
input_layernorm: Whether to prepend a LayerNorm before
everything else. Should be True for building a GTrXL.
output_activation (Union[str, callable]): Optional activation
function or activation function specifier (str).
Should be "relu" for GTrXL.
**kwargs:
"""
super().__init__(**kwargs)
# No bias or non-linearity.
self._num_heads = num_heads
self._head_dim = head_dim
# 3=Query, key, and value inputs.
self._qkv_layer = SlimFC(
in_size=in_dim, out_size=3 * num_heads * head_dim, use_bias=False
)
self._linear_layer = SlimFC(
in_size=num_heads * head_dim,
out_size=out_dim,
use_bias=False,
activation_fn=output_activation,
)
self._uvar = nn.Parameter(torch.zeros(num_heads, head_dim))
self._vvar = nn.Parameter(torch.zeros(num_heads, head_dim))
nn.init.xavier_uniform_(self._uvar)
nn.init.xavier_uniform_(self._vvar)
self.register_parameter("_uvar", self._uvar)
self.register_parameter("_vvar", self._vvar)
self._pos_proj = SlimFC(
in_size=in_dim, out_size=num_heads * head_dim, use_bias=False
)
self._rel_pos_embedding = RelativePositionEmbedding(out_dim)
self._input_layernorm = None
if input_layernorm:
self._input_layernorm = torch.nn.LayerNorm(in_dim)
def forward(self, inputs: TensorType, memory: TensorType = None) -> TensorType:
T = list(inputs.size())[1] # length of segment (time)
H = self._num_heads # number of attention heads
d = self._head_dim # attention head dimension
# Add previous memory chunk (as const, w/o gradient) to input.
# Tau (number of (prev) time slices in each memory chunk).
Tau = list(memory.shape)[1]
inputs = torch.cat((memory.detach(), inputs), dim=1)
# Apply the Layer-Norm.
if self._input_layernorm is not None:
inputs = self._input_layernorm(inputs)
qkv = self._qkv_layer(inputs)
queries, keys, values = torch.chunk(input=qkv, chunks=3, dim=-1)
# Cut out Tau memory timesteps from query.
queries = queries[:, -T:]
queries = torch.reshape(queries, [-1, T, H, d])
keys = torch.reshape(keys, [-1, Tau + T, H, d])
values = torch.reshape(values, [-1, Tau + T, H, d])
R = self._pos_proj(self._rel_pos_embedding(Tau + T))
R = torch.reshape(R, [Tau + T, H, d])
# b=batch
# i and j=time indices (i=max-timesteps (inputs); j=Tau memory space)
# h=head
# d=head-dim (over which we will reduce-sum)
score = torch.einsum("bihd,bjhd->bijh", queries + self._uvar, keys)
pos_score = torch.einsum("bihd,jhd->bijh", queries + self._vvar, R)
score = score + self.rel_shift(pos_score)
score = score / d ** 0.5
# causal mask of the same length as the sequence
mask = sequence_mask(torch.arange(Tau + 1, Tau + T + 1), dtype=score.dtype).to(
score.device
)
mask = mask[None, :, :, None]
masked_score = score * mask + 1e30 * (mask.float() - 1.0)
wmat = nn.functional.softmax(masked_score, dim=2)
out = torch.einsum("bijh,bjhd->bihd", wmat, values)
shape = list(out.shape)[:2] + [H * d]
out = torch.reshape(out, shape)
return self._linear_layer(out)
@staticmethod
def rel_shift(x: TensorType) -> TensorType:
# Transposed version of the shift approach described in [3].
# https://github.com/kimiyoung/transformer-xl/blob/
# 44781ed21dbaec88b280f74d9ae2877f52b492a5/tf/model.py#L31
x_size = list(x.shape)
x = torch.nn.functional.pad(x, (0, 0, 1, 0, 0, 0, 0, 0))
x = torch.reshape(x, [x_size[0], x_size[2] + 1, x_size[1], x_size[3]])
x = x[:, 1:, :, :]
x = torch.reshape(x, x_size)
return x