mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
No description
![]() * wip * more work * fix apex * docs * apex doc * pool comment * clean up * make wrap stack pluggable * Mon Mar 12 21:45:50 PDT 2018 * clean up comment * table * Mon Mar 12 22:51:57 PDT 2018 * Mon Mar 12 22:53:05 PDT 2018 * Mon Mar 12 22:55:03 PDT 2018 * Mon Mar 12 22:56:18 PDT 2018 * Mon Mar 12 22:59:54 PDT 2018 * Update apex_optimizer.py * Update index.rst * Update README.rst * Update README.rst * comments * Wed Mar 14 19:01:02 PDT 2018 |
||
---|---|---|
.github | ||
.travis | ||
cmake/Modules | ||
doc | ||
docker | ||
examples | ||
python | ||
site | ||
src | ||
test | ||
thirdparty/scripts | ||
vsprojects | ||
.clang-format | ||
.gitignore | ||
.style.yapf | ||
.travis.yml | ||
build-docker.sh | ||
build.sh | ||
CMakeLists.txt | ||
CONTRIBUTING.rst | ||
LICENSE | ||
pylintrc | ||
Ray.sln | ||
README.rst | ||
setup_thirdparty.sh |
Ray === .. image:: https://travis-ci.org/ray-project/ray.svg?branch=master :target: https://travis-ci.org/ray-project/ray .. image:: https://readthedocs.org/projects/ray/badge/?version=latest :target: http://ray.readthedocs.io/en/latest/?badge=latest | Ray is a flexible, high-performance distributed execution framework. Ray is easy to install: ``pip install ray`` Example Use ----------- +------------------------------------------------+----------------------------------------------------+ | **Basic Python** | **Distributed with Ray** | +------------------------------------------------+----------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | # Execute f serially. | # Execute f in parallel. | | | | | | @ray.remote | | def f(): | def f(): | | time.sleep(1) | time.sleep(1) | | return 1 | return 1 | | | | | | | | | ray.init() | | results = [f() for i in range(4)] | results = ray.get([f.remote() for i in range(4)]) | +------------------------------------------------+----------------------------------------------------+ Ray comes with libraries that accelerate deep learning and reinforcement learning development: - `Ray Tune`_: Hyperparameter Optimization Framework - `Ray RLlib`_: Scalable Reinforcement Learning .. _`Ray Tune`: http://ray.readthedocs.io/en/latest/tune.html .. _`Ray RLlib`: http://ray.readthedocs.io/en/latest/rllib.html Installation ------------ Ray can be installed on Linux and Mac with ``pip install ray``. To build Ray from source or to install the nightly versions, see the `installation documentation`_. .. _`installation documentation`: http://ray.readthedocs.io/en/latest/installation.html More Information ---------------- - `Documentation`_ - `Tutorial`_ - `Blog`_ - `Ray paper`_ - `Ray HotOS paper`_ .. _`Documentation`: http://ray.readthedocs.io/en/latest/index.html .. _`Tutorial`: https://github.com/ray-project/tutorial .. _`Blog`: https://ray-project.github.io/ .. _`Ray paper`: https://arxiv.org/abs/1712.05889 .. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924 Getting Involved ---------------- - Ask questions on our mailing list `ray-dev@googlegroups.com`_. - Please report bugs by submitting a `GitHub issue`_. - Submit contributions using `pull requests`_. .. _`ray-dev@googlegroups.com`: https://groups.google.com/forum/#!forum/ray-dev .. _`GitHub issue`: https://github.com/ray-project/ray/issues .. _`pull requests`: https://github.com/ray-project/ray/pulls