ray/doc/examples/doc_code/metrics_example.py

58 lines
1.7 KiB
Python

import time
import ray
from ray.util.metrics import Counter, Gauge, Histogram
ray.init(_metrics_export_port=8080)
@ray.remote
class MyActor:
def __init__(self, name):
self._curr_count = 0
self.counter = Counter(
"num_requests",
description="Number of requests processed by the actor.",
tag_keys=("actor_name", ))
self.counter.set_default_tags({"actor_name": name})
self.gauge = Gauge(
"curr_count",
description="Current count held by the actor. Goes up and down.",
tag_keys=("actor_name", ))
self.gauge.set_default_tags({"actor_name": name})
self.histogram = Histogram(
"request_latency",
description="Latencies of requests in ms.",
boundaries=[0.1, 1],
tag_keys=("actor_name", ))
self.histogram.set_default_tags({"actor_name": name})
def process_request(self, num):
start = time.time()
self._curr_count += num
# Increment the total request count.
self.counter.inc()
# Update the gauge to the new value.
self.gauge.set(self._curr_count)
# Record the latency for this request in ms.
self.histogram.observe(1000 * (time.time() - start))
return self._curr_count
print("Starting actor.")
my_actor = MyActor.remote("my_actor")
print("Calling actor.")
my_actor.process_request.remote(-10)
print("Calling actor.")
my_actor.process_request.remote(5)
print("Metrics should be exported.")
print("See http://localhost:8080 (this may take a few seconds to load).")
# Sleep so we can look at the metrics before exiting.
time.sleep(30)
print("Exiting!")