ray/rllib/models/torch/torch_action_dist.py

64 lines
1.8 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
try:
import torch
except ImportError:
pass # soft dep
import numpy as np
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.utils.annotations import override
class TorchDistributionWrapper(ActionDistribution):
"""Wrapper class for torch.distributions."""
@override(ActionDistribution)
def logp(self, actions):
return self.dist.log_prob(actions)
@override(ActionDistribution)
def entropy(self):
return self.dist.entropy()
@override(ActionDistribution)
def kl(self, other):
return torch.distributions.kl.kl_divergence(self.dist, other)
@override(ActionDistribution)
def sample(self):
return self.dist.sample()
class TorchCategorical(TorchDistributionWrapper):
"""Wrapper class for PyTorch Categorical distribution."""
@override(ActionDistribution)
def __init__(self, inputs, model):
self.dist = torch.distributions.categorical.Categorical(logits=inputs)
@staticmethod
@override(ActionDistribution)
def required_model_output_shape(action_space, model_config):
return action_space.n
class TorchDiagGaussian(TorchDistributionWrapper):
"""Wrapper class for PyTorch Normal distribution."""
@override(ActionDistribution)
def __init__(self, inputs, model):
mean, log_std = torch.chunk(inputs, 2, dim=1)
self.dist = torch.distributions.normal.Normal(mean, torch.exp(log_std))
@override(TorchDistributionWrapper)
def logp(self, actions):
return TorchDistributionWrapper.logp(self, actions).sum(-1)
@staticmethod
@override(ActionDistribution)
def required_model_output_shape(action_space, model_config):
return np.prod(action_space.shape) * 2