ray/rllib/models/torch/misc.py

115 lines
3.5 KiB
Python

""" Code adapted from https://github.com/ikostrikov/pytorch-a3c"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
def normc_initializer(std=1.0):
def initializer(tensor):
tensor.data.normal_(0, 1)
tensor.data *= std / torch.sqrt(
tensor.data.pow(2).sum(1, keepdim=True))
return initializer
def valid_padding(in_size, filter_size, stride_size):
"""Note: Padding is added to match TF conv2d `same` padding. See
www.tensorflow.org/versions/r0.12/api_docs/python/nn/convolution
Params:
in_size (tuple): Rows (Height), Column (Width) for input
stride_size (tuple): Rows (Height), Column (Width) for stride
filter_size (tuple): Rows (Height), Column (Width) for filter
Output:
padding (tuple): For input into torch.nn.ZeroPad2d
output (tuple): Output shape after padding and convolution
"""
in_height, in_width = in_size
filter_height, filter_width = filter_size
stride_height, stride_width = stride_size
out_height = np.ceil(float(in_height) / float(stride_height))
out_width = np.ceil(float(in_width) / float(stride_width))
pad_along_height = int(
((out_height - 1) * stride_height + filter_height - in_height))
pad_along_width = int(
((out_width - 1) * stride_width + filter_width - in_width))
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left
padding = (pad_left, pad_right, pad_top, pad_bottom)
output = (out_height, out_width)
return padding, output
def _get_activation_fn(name):
activation = None
if name == "tanh":
activation = nn.Tanh
elif name == "relu":
activation = nn.ReLU
else:
raise ValueError("Unknown activation: {}".format(name))
return activation
class SlimConv2d(nn.Module):
"""Simple mock of tf.slim Conv2d"""
def __init__(self,
in_channels,
out_channels,
kernel,
stride,
padding,
initializer=nn.init.xavier_uniform_,
activation_fn=nn.ReLU,
bias_init=0):
super(SlimConv2d, self).__init__()
layers = []
if padding:
layers.append(nn.ZeroPad2d(padding))
conv = nn.Conv2d(in_channels, out_channels, kernel, stride)
if initializer:
initializer(conv.weight)
nn.init.constant_(conv.bias, bias_init)
layers.append(conv)
if activation_fn:
layers.append(activation_fn())
self._model = nn.Sequential(*layers)
def forward(self, x):
return self._model(x)
class SlimFC(nn.Module):
"""Simple PyTorch version of `linear` function"""
def __init__(self,
in_size,
out_size,
initializer=None,
activation_fn=None,
bias_init=0):
super(SlimFC, self).__init__()
layers = []
linear = nn.Linear(in_size, out_size)
if initializer:
initializer(linear.weight)
nn.init.constant_(linear.bias, bias_init)
layers.append(linear)
if activation_fn:
layers.append(activation_fn())
self._model = nn.Sequential(*layers)
def forward(self, x):
return self._model(x)