ray/rllib/examples/env/random_env.py

51 lines
1.9 KiB
Python

import gym
from gym.spaces import Discrete, Tuple
import numpy as np
from ray.rllib.examples.env.multi_agent import make_multiagent
class RandomEnv(gym.Env):
"""A randomly acting environment.
Can be instantiated with arbitrary action-, observation-, and reward
spaces. Observations and rewards are generated by simply sampling from the
observation/reward spaces. The probability of a `done=True` can be
configured as well.
"""
def __init__(self, config):
# Action space.
self.action_space = config.get("action_space", Discrete(2))
# Observation space from which to sample.
self.observation_space = config.get("observation_space", Discrete(2))
# Reward space from which to sample.
self.reward_space = config.get(
"reward_space",
gym.spaces.Box(low=-1.0, high=1.0, shape=(), dtype=np.float32))
# Chance that an episode ends at any step.
self.p_done = config.get("p_done", 0.1)
# Whether to check action bounds.
self.check_action_bounds = config.get("check_action_bounds", False)
def reset(self):
return self.observation_space.sample()
def step(self, action):
if self.check_action_bounds and not self.action_space.contains(action):
raise ValueError("Illegal action for {}: {}".format(
self.action_space, action))
if (isinstance(self.action_space, Tuple)
and len(action) != len(self.action_space.spaces)):
raise ValueError("Illegal action for {}: {}".format(
self.action_space, action))
return self.observation_space.sample(), \
float(self.reward_space.sample()), \
bool(np.random.choice(
[True, False], p=[self.p_done, 1.0 - self.p_done]
)), {}
# Multi-agent version of the RandomEnv.
RandomMultiAgentEnv = make_multiagent(lambda c: RandomEnv(c))