ray/rllib/agents/dqn/tests/test_dqn.py
Sven Mika 83e06cd30a
[RLlib] DDPG refactor and Exploration API action noise classes. (#7314)
* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix

* WIP.

* Add TD3 quick Pendulum regresison.

* Cleanup.

* Fix.

* LINT.

* Fix.

* Sort quick_learning test cases, add TD3.

* Sort quick_learning test cases, add TD3.

* Revert test_checkpoint_restore.py (debugging) changes.

* Fix old soft_q settings in documentation and test configs.

* More doc fixes.

* Fix test case.

* Fix test case.

* Lower test load.

* WIP.
2020-03-01 11:53:35 -08:00

103 lines
3.8 KiB
Python

import numpy as np
import unittest
import ray.rllib.agents.dqn as dqn
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check
tf = try_import_tf()
class TestDQN(unittest.TestCase):
def test_dqn_compilation(self):
"""Test whether a DQNTrainer can be built with both frameworks."""
config = dqn.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
# tf.
config["eager"] = False
trainer = dqn.DQNTrainer(config=config, env="CartPole-v0")
num_iterations = 2
for i in range(num_iterations):
results = trainer.train()
print(results)
config["eager"] = True
trainer = dqn.DQNTrainer(config=config, env="CartPole-v0")
num_iterations = 2
for i in range(num_iterations):
results = trainer.train()
print(results)
def test_dqn_exploration_and_soft_q_config(self):
"""Tests, whether a DQN Agent outputs exploration/softmaxed actions."""
config = dqn.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
obs = np.array(0)
# Test against all frameworks.
for fw in ["tf", "eager", "torch"]:
if fw == "torch":
continue
config["eager"] = True if fw == "eager" else False
config["use_pytorch"] = True if fw == "torch" else False
# Default EpsilonGreedy setup.
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Setting explore=False should always return the same action.
a_ = trainer.compute_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_action(obs, explore=False)
check(a, a_)
# explore=None (default: explore) should return different actions.
actions = []
for _ in range(50):
actions.append(trainer.compute_action(obs))
check(np.std(actions), 0.0, false=True)
# Low softmax temperature. Behaves like argmax
# (but no epsilon exploration).
config["exploration_config"] = {
"type": "SoftQ",
"temperature": 0.0
}
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Due to the low temp, always expect the same action.
a_ = trainer.compute_action(obs)
for _ in range(50):
a = trainer.compute_action(obs)
check(a, a_)
# Higher softmax temperature.
config["exploration_config"]["temperature"] = 1.0
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Even with the higher temperature, if we set explore=False, we
# should expect the same actions always.
a_ = trainer.compute_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_action(obs, explore=False)
check(a, a_)
# Due to the higher temp, expect different actions avg'ing
# around 1.5.
actions = []
for _ in range(300):
actions.append(trainer.compute_action(obs))
check(np.std(actions), 0.0, false=True)
# With Random exploration.
config["exploration_config"] = {"type": "Random"}
config["explore"] = True
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
actions = []
for _ in range(300):
actions.append(trainer.compute_action(obs))
check(np.std(actions), 0.0, false=True)
if __name__ == "__main__":
import unittest
unittest.main(verbosity=1)