ray/rllib/train.py
2021-05-18 11:10:46 +02:00

244 lines
8.4 KiB
Python
Executable file

#!/usr/bin/env python
import argparse
import os
from pathlib import Path
import yaml
import ray
from ray.cluster_utils import Cluster
from ray.tune.config_parser import make_parser
from ray.tune.progress_reporter import CLIReporter, JupyterNotebookReporter
from ray.tune.result import DEFAULT_RESULTS_DIR
from ray.tune.resources import resources_to_json
from ray.tune.tune import run_experiments
from ray.tune.schedulers import create_scheduler
from ray.rllib.utils import force_list
from ray.rllib.utils.framework import try_import_tf, try_import_torch
try:
class_name = get_ipython().__class__.__name__
IS_NOTEBOOK = True if "Terminal" not in class_name else False
except NameError:
IS_NOTEBOOK = False
# Try to import both backends for flag checking/warnings.
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
EXAMPLE_USAGE = """
Training example via RLlib CLI:
rllib train --run DQN --env CartPole-v0
Grid search example via RLlib CLI:
rllib train -f tuned_examples/cartpole-grid-search-example.yaml
Grid search example via executable:
./train.py -f tuned_examples/cartpole-grid-search-example.yaml
Note that -f overrides all other trial-specific command-line options.
"""
def create_parser(parser_creator=None):
parser = make_parser(
parser_creator=parser_creator,
formatter_class=argparse.RawDescriptionHelpFormatter,
description="Train a reinforcement learning agent.",
epilog=EXAMPLE_USAGE)
# See also the base parser definition in ray/tune/config_parser.py
parser.add_argument(
"--ray-address",
default=None,
type=str,
help="Connect to an existing Ray cluster at this address instead "
"of starting a new one.")
parser.add_argument(
"--no-ray-ui",
action="store_true",
help="Whether to disable the Ray web ui.")
parser.add_argument(
"--local-mode",
action="store_true",
help="Run ray in local mode for easier debugging.")
parser.add_argument(
"--ray-num-cpus",
default=None,
type=int,
help="--num-cpus to use if starting a new cluster.")
parser.add_argument(
"--ray-num-gpus",
default=None,
type=int,
help="--num-gpus to use if starting a new cluster.")
parser.add_argument(
"--ray-num-nodes",
default=None,
type=int,
help="Emulate multiple cluster nodes for debugging.")
parser.add_argument(
"--ray-object-store-memory",
default=None,
type=int,
help="--object-store-memory to use if starting a new cluster.")
parser.add_argument(
"--experiment-name",
default="default",
type=str,
help="Name of the subdirectory under `local_dir` to put results in.")
parser.add_argument(
"--local-dir",
default=DEFAULT_RESULTS_DIR,
type=str,
help="Local dir to save training results to. Defaults to '{}'.".format(
DEFAULT_RESULTS_DIR))
parser.add_argument(
"--upload-dir",
default="",
type=str,
help="Optional URI to sync training results to (e.g. s3://bucket).")
parser.add_argument(
"-v", action="store_true", help="Whether to use INFO level logging.")
parser.add_argument(
"-vv", action="store_true", help="Whether to use DEBUG level logging.")
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume previous Tune experiments.")
parser.add_argument(
"--torch",
action="store_true",
help="Whether to use PyTorch (instead of tf) as the DL framework.")
parser.add_argument(
"--eager",
action="store_true",
help="Whether to attempt to enable TF eager execution.")
parser.add_argument(
"--trace",
action="store_true",
help="Whether to attempt to enable tracing for eager mode.")
parser.add_argument(
"--env", default=None, type=str, help="The gym environment to use.")
parser.add_argument(
"--queue-trials",
action="store_true",
help=(
"Whether to queue trials when the cluster does not currently have "
"enough resources to launch one. This should be set to True when "
"running on an autoscaling cluster to enable automatic scale-up."))
parser.add_argument(
"-f",
"--config-file",
default=None,
type=str,
help="If specified, use config options from this file. Note that this "
"overrides any trial-specific options set via flags above.")
return parser
def run(args, parser):
if args.config_file:
with open(args.config_file) as f:
experiments = yaml.safe_load(f)
else:
# Note: keep this in sync with tune/config_parser.py
experiments = {
args.experiment_name: { # i.e. log to ~/ray_results/default
"run": args.run,
"checkpoint_freq": args.checkpoint_freq,
"checkpoint_at_end": args.checkpoint_at_end,
"keep_checkpoints_num": args.keep_checkpoints_num,
"checkpoint_score_attr": args.checkpoint_score_attr,
"local_dir": args.local_dir,
"resources_per_trial": (
args.resources_per_trial and
resources_to_json(args.resources_per_trial)),
"stop": args.stop,
"config": dict(args.config, env=args.env),
"restore": args.restore,
"num_samples": args.num_samples,
"upload_dir": args.upload_dir,
}
}
verbose = 1
for exp in experiments.values():
# Bazel makes it hard to find files specified in `args` (and `data`).
# Look for them here.
# NOTE: Some of our yaml files don't have a `config` section.
input_ = exp.get("config", {}).get("input")
if input_ and input_ != "sampler":
inputs = force_list(input_)
# This script runs in the ray/rllib dir.
rllib_dir = Path(__file__).parent
abs_inputs = [
str(rllib_dir.absolute().joinpath(i))
if not os.path.exists(i) else i for i in inputs
]
if not isinstance(input_, list):
abs_inputs = abs_inputs[0]
exp["config"]["input"] = abs_inputs
if not exp.get("run"):
parser.error("the following arguments are required: --run")
if not exp.get("env") and not exp.get("config", {}).get("env"):
parser.error("the following arguments are required: --env")
if args.torch:
exp["config"]["framework"] = "torch"
elif args.eager:
exp["config"]["framework"] = "tfe"
if args.trace:
if exp["config"]["framework"] not in ["tf2", "tfe"]:
raise ValueError("Must enable --eager to enable tracing.")
exp["config"]["eager_tracing"] = True
if args.v:
exp["config"]["log_level"] = "INFO"
verbose = 3 # Print details on trial result
if args.vv:
exp["config"]["log_level"] = "DEBUG"
verbose = 3 # Print details on trial result
if args.ray_num_nodes:
cluster = Cluster()
for _ in range(args.ray_num_nodes):
cluster.add_node(
num_cpus=args.ray_num_cpus or 1,
num_gpus=args.ray_num_gpus or 0,
object_store_memory=args.ray_object_store_memory)
ray.init(address=cluster.address)
else:
ray.init(
include_dashboard=not args.no_ray_ui,
address=args.ray_address,
object_store_memory=args.ray_object_store_memory,
num_cpus=args.ray_num_cpus,
num_gpus=args.ray_num_gpus,
local_mode=args.local_mode)
if IS_NOTEBOOK:
progress_reporter = JupyterNotebookReporter(
overwrite=verbose >= 3, print_intermediate_tables=verbose >= 1)
else:
progress_reporter = CLIReporter(print_intermediate_tables=verbose >= 1)
run_experiments(
experiments,
scheduler=create_scheduler(args.scheduler, **args.scheduler_config),
resume=args.resume,
queue_trials=args.queue_trials,
verbose=verbose,
progress_reporter=progress_reporter,
concurrent=True)
ray.shutdown()
if __name__ == "__main__":
parser = create_parser()
args = parser.parse_args()
run(args, parser)