mirror of
https://github.com/vale981/ray
synced 2025-03-11 05:46:37 -04:00
257 lines
9.3 KiB
Python
257 lines
9.3 KiB
Python
import gym
|
|
import numpy as np
|
|
import unittest
|
|
import ray
|
|
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.view_requirement import ViewRequirement
|
|
from ray.rllib.utils.test_utils import check
|
|
from ray.rllib.evaluation.collectors.simple_list_collector import _AgentCollector
|
|
|
|
|
|
# TODO: @kourosh remove it once we have removed the dependency _agent_collector to
|
|
# policy
|
|
class FakeRNNPolicy:
|
|
def __init__(self, max_seq_len=1) -> None:
|
|
self.config = {
|
|
"_disable_action_flattening": True,
|
|
"model": {
|
|
"max_seq_len": max_seq_len,
|
|
},
|
|
}
|
|
|
|
def is_recurrent(self):
|
|
return True
|
|
|
|
|
|
class TestTrajectoryViewAPI(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls) -> None:
|
|
ray.shutdown()
|
|
|
|
def _simulate_env_steps(self, ac, n_steps=1):
|
|
obses = []
|
|
obses.append(np.random.rand(4))
|
|
ac.add_init_obs(
|
|
episode_id=0,
|
|
agent_index=1,
|
|
env_id=0,
|
|
t=-1,
|
|
init_obs=obses[-1],
|
|
)
|
|
|
|
for t in range(n_steps):
|
|
obses.append(np.random.rand(4))
|
|
ac.add_action_reward_next_obs(
|
|
{SampleBatch.NEXT_OBS: obses[-1], SampleBatch.T: t}
|
|
)
|
|
|
|
return obses
|
|
|
|
def test_slice_with_repeat_value_1(self):
|
|
|
|
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
|
|
ctx_len = 5
|
|
view_reqs = {
|
|
SampleBatch.T: ViewRequirement(SampleBatch.T),
|
|
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
|
|
"prev_obses": ViewRequirement("obs", shift=f"-{ctx_len}:-1"),
|
|
}
|
|
ac = _AgentCollector(view_reqs=view_reqs, policy=FakeRNNPolicy(max_seq_len=1))
|
|
|
|
obses = self._simulate_env_steps(ac, n_steps=10)
|
|
|
|
sample_batch = ac.build(view_reqs)
|
|
# exclude the last one since these are the next_obses
|
|
expected_obses = np.stack(obses[:-1])
|
|
|
|
check(expected_obses, sample_batch[SampleBatch.OBS])
|
|
|
|
for t in range(10):
|
|
# no padding
|
|
if t > ctx_len - 1:
|
|
check(sample_batch["prev_obses"][t], expected_obses[t - ctx_len : t])
|
|
else:
|
|
# with padding
|
|
for offset in range(ctx_len):
|
|
if offset < ctx_len - t:
|
|
# check the padding
|
|
check(sample_batch["prev_obses"][t, offset], expected_obses[0])
|
|
else:
|
|
# check the rest of the data
|
|
check(
|
|
sample_batch["prev_obses"][t, offset:],
|
|
expected_obses[t - ctx_len + offset : t],
|
|
)
|
|
break
|
|
|
|
def test_slice_with_repeat_value_larger_1(self):
|
|
|
|
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
|
|
ctx_len = 5
|
|
view_reqs = {
|
|
SampleBatch.T: ViewRequirement(SampleBatch.T),
|
|
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
|
|
"prev_obses": ViewRequirement(
|
|
"obs", shift=f"-{ctx_len}:-1", batch_repeat_value=ctx_len
|
|
),
|
|
}
|
|
ac = _AgentCollector(view_reqs=view_reqs, policy=FakeRNNPolicy(max_seq_len=1))
|
|
|
|
obses = self._simulate_env_steps(ac, n_steps=10)
|
|
|
|
sample_batch = ac.build(view_reqs)
|
|
# exclude the last one since these are the next_obses
|
|
expected_obses = np.stack(obses[:-1])
|
|
|
|
check(expected_obses, sample_batch[SampleBatch.OBS])
|
|
self.assertEqual(sample_batch["prev_obses"].shape, (2, ctx_len, 4))
|
|
|
|
# the first prev_obses should be just the first obses repeated ctx_len times
|
|
check(sample_batch["prev_obses"][0], np.ones((ctx_len, 1)) * expected_obses[0])
|
|
# the second prev_obses should be ctx_len slice of obses started at index 0
|
|
check(sample_batch["prev_obses"][1], expected_obses[:ctx_len])
|
|
|
|
def test_shift_by_one_with_repeat_value_larger_1(self):
|
|
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
|
|
ctx_len = 5
|
|
view_reqs = {
|
|
SampleBatch.T: ViewRequirement(SampleBatch.T),
|
|
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
|
|
"prev_obses": ViewRequirement("obs", shift=-1, batch_repeat_value=ctx_len),
|
|
}
|
|
ac = _AgentCollector(view_reqs=view_reqs, policy=FakeRNNPolicy(max_seq_len=1))
|
|
|
|
obses = self._simulate_env_steps(ac, n_steps=10)
|
|
|
|
sample_batch = ac.build(view_reqs)
|
|
# exclude the last one since these are the next_obses
|
|
expected_obses = np.stack(obses[:-1])
|
|
|
|
self.assertEqual(sample_batch["prev_obses"].shape, (2, 4))
|
|
|
|
# should be the same as padding
|
|
check(sample_batch["prev_obses"][0], expected_obses[0])
|
|
|
|
# should be the same as index ctx_len - 1
|
|
check(sample_batch["prev_obses"][1], expected_obses[ctx_len - 1])
|
|
|
|
def test_shift_by_one_with_repeat_1(self):
|
|
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
|
|
view_reqs = {
|
|
SampleBatch.T: ViewRequirement(SampleBatch.T),
|
|
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
|
|
"prev_obses": ViewRequirement("obs", shift=-1),
|
|
}
|
|
ac = _AgentCollector(view_reqs=view_reqs, policy=FakeRNNPolicy(max_seq_len=1))
|
|
|
|
obses = self._simulate_env_steps(ac, n_steps=10)
|
|
|
|
sample_batch = ac.build(view_reqs)
|
|
# exclude the last one since these are the next_obses
|
|
expected_obses = np.stack(obses[:-1])
|
|
|
|
# check the padding
|
|
check(sample_batch["prev_obses"][0], expected_obses[0])
|
|
|
|
# check the data
|
|
check(sample_batch["prev_obses"][1:], expected_obses[:-1])
|
|
|
|
def test_shift_positive_one_with_repeat_1(self):
|
|
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
|
|
view_reqs = {
|
|
SampleBatch.T: ViewRequirement(SampleBatch.T),
|
|
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
|
|
SampleBatch.NEXT_OBS: ViewRequirement("obs", shift=1),
|
|
}
|
|
ac = _AgentCollector(view_reqs=view_reqs, policy=FakeRNNPolicy(max_seq_len=1))
|
|
|
|
obses = self._simulate_env_steps(ac, n_steps=10)
|
|
sample_batch = ac.build(view_reqs)
|
|
check(sample_batch[SampleBatch.NEXT_OBS], np.stack(obses)[1:])
|
|
|
|
def test_shift_positive_one_with_repeat_larger_1(self):
|
|
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
|
|
ctx_len = 5
|
|
view_reqs = {
|
|
SampleBatch.T: ViewRequirement(SampleBatch.T),
|
|
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
|
|
SampleBatch.NEXT_OBS: ViewRequirement(
|
|
"obs", shift=1, batch_repeat_value=ctx_len
|
|
),
|
|
}
|
|
ac = _AgentCollector(view_reqs=view_reqs, policy=FakeRNNPolicy(max_seq_len=1))
|
|
|
|
obses = self._simulate_env_steps(ac, n_steps=10)
|
|
|
|
sample_batch = ac.build(view_reqs)
|
|
expected_obses = np.stack(obses)
|
|
|
|
self.assertEqual(sample_batch[SampleBatch.NEXT_OBS].shape, (2, 4))
|
|
|
|
# next_obs at index = 0 should be equal to obs at index = 1
|
|
check(sample_batch[SampleBatch.NEXT_OBS][0], expected_obses[1])
|
|
|
|
# next_obs at index = 1 should be equal to next_obs at index = ctx_len - 1
|
|
# which is obs at index = ctx_len
|
|
check(sample_batch[SampleBatch.NEXT_OBS][1], expected_obses[ctx_len + 1])
|
|
|
|
def test_slice_with_array(self):
|
|
|
|
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
|
|
view_reqs = {
|
|
SampleBatch.T: ViewRequirement(SampleBatch.T),
|
|
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
|
|
"prev_obses": ViewRequirement("obs", shift=[-3, -1]),
|
|
}
|
|
|
|
ac = _AgentCollector(view_reqs=view_reqs, policy=FakeRNNPolicy(max_seq_len=1))
|
|
|
|
obses = self._simulate_env_steps(ac, n_steps=10)
|
|
|
|
sample_batch = ac.build(view_reqs)
|
|
# exclude the last one since these are the next_obses
|
|
expected_obses = np.stack(obses[:-1])
|
|
|
|
self.assertEqual(sample_batch["prev_obses"].shape, (10, 2, 4))
|
|
|
|
# check if the last time step is correct
|
|
check(sample_batch["prev_obses"][-1], expected_obses[-4:-1:2])
|
|
|
|
# check if the padding in the beginning is correct
|
|
check(sample_batch["prev_obses"][0], np.ones((2, 1)) * expected_obses[0])
|
|
|
|
def test_view_requirement_with_shfit_step(self):
|
|
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
|
|
view_reqs = {
|
|
SampleBatch.T: ViewRequirement(SampleBatch.T),
|
|
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
|
|
"prev_obses": ViewRequirement("obs", shift="-5:-1:2"), # [-5, -3, -1]
|
|
}
|
|
|
|
ac = _AgentCollector(view_reqs=view_reqs, policy=FakeRNNPolicy(max_seq_len=1))
|
|
|
|
obses = self._simulate_env_steps(ac, n_steps=10)
|
|
|
|
sample_batch = ac.build(view_reqs)
|
|
# exclude the last one since these are the next_obses
|
|
expected_obses = np.stack(obses[:-1])
|
|
|
|
self.assertEqual(sample_batch["prev_obses"].shape, (10, 3, 4))
|
|
|
|
# check if the last time step is correct
|
|
check(sample_batch["prev_obses"][-1], expected_obses[-6:-1:2])
|
|
|
|
# check if the padding in the beginning is correct
|
|
check(sample_batch["prev_obses"][0], np.ones((3, 1)) * expected_obses[0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|