ray/rllib/utils/exploration/ornstein_uhlenbeck_noise.py

177 lines
7.6 KiB
Python

import numpy as np
from ray.rllib.utils.annotations import override
from ray.rllib.utils.exploration.gaussian_noise import GaussianNoise
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
get_variable
tf = try_import_tf()
torch, _ = try_import_torch()
class OrnsteinUhlenbeckNoise(GaussianNoise):
"""An exploration that adds Ornstein-Uhlenbeck noise to continuous actions.
If explore=True, returns sampled actions plus a noise term X,
which changes according to this formula:
Xt+1 = -theta*Xt + sigma*N[0,stddev], where theta, sigma and stddev are
constants. Also, some completely random period is possible at the
beginning.
If explore=False, returns the deterministic action.
"""
def __init__(self,
action_space,
*,
framework: str,
ou_theta=0.15,
ou_sigma=0.2,
ou_base_scale=0.1,
random_timesteps=1000,
initial_scale=1.0,
final_scale=0.02,
scale_timesteps=10000,
scale_schedule=None,
**kwargs):
"""Initializes an Ornstein-Uhlenbeck Exploration object.
Args:
action_space (Space): The gym action space used by the environment.
ou_theta (float): The theta parameter of the Ornstein-Uhlenbeck
process.
ou_sigma (float): The sigma parameter of the Ornstein-Uhlenbeck
process.
ou_base_scale (float): A fixed scaling factor, by which all OU-
noise is multiplied. NOTE: This is on top of the parent
GaussianNoise's scaling.
random_timesteps (int): The number of timesteps for which to act
completely randomly. Only after this number of timesteps, the
`self.scale` annealing process will start (see below).
initial_scale (float): The initial scaling weight to multiply
the noise with.
final_scale (float): The final scaling weight to multiply
the noise with.
scale_timesteps (int): The timesteps over which to linearly anneal
the scaling factor (after(!) having used random actions for
`random_timesteps` steps.
scale_schedule (Optional[Schedule]): An optional Schedule object
to use (instead of constructing one from the given parameters).
framework (Optional[str]): One of None, "tf", "torch".
"""
super().__init__(
action_space,
framework=framework,
random_timesteps=random_timesteps,
initial_scale=initial_scale,
final_scale=final_scale,
scale_timesteps=scale_timesteps,
scale_schedule=scale_schedule,
stddev=1.0, # Force `self.stddev` to 1.0.
**kwargs)
self.ou_theta = ou_theta
self.ou_sigma = ou_sigma
self.ou_base_scale = ou_base_scale
# The current OU-state value (gets updated each time, an eploration
# action is computed).
self.ou_state = get_variable(
np.array(self.action_space.low.size * [.0], dtype=np.float32),
framework=self.framework,
tf_name="ou_state",
torch_tensor=True,
device=self.device)
@override(GaussianNoise)
def _get_tf_exploration_action_op(self, action_dist, explore, timestep):
ts = timestep if timestep is not None else self.last_timestep
scale = self.scale_schedule(ts)
# The deterministic actions (if explore=False).
deterministic_actions = action_dist.deterministic_sample()
# Apply base-scaled and time-annealed scaled OU-noise to
# deterministic actions.
gaussian_sample = tf.random_normal(
shape=[self.action_space.low.size], stddev=self.stddev)
ou_new = self.ou_theta * -self.ou_state + \
self.ou_sigma * gaussian_sample
ou_state_new = tf.assign_add(self.ou_state, ou_new)
high_m_low = self.action_space.high - self.action_space.low
high_m_low = tf.where(
tf.math.is_inf(high_m_low), tf.ones_like(high_m_low), high_m_low)
noise = scale * self.ou_base_scale * ou_state_new * high_m_low
stochastic_actions = tf.clip_by_value(
deterministic_actions + noise,
self.action_space.low * tf.ones_like(deterministic_actions),
self.action_space.high * tf.ones_like(deterministic_actions))
# Stochastic actions could either be: random OR action + noise.
random_actions, _ = \
self.random_exploration.get_tf_exploration_action_op(
action_dist, explore)
exploration_actions = tf.cond(
pred=ts <= self.random_timesteps,
true_fn=lambda: random_actions,
false_fn=lambda: stochastic_actions)
# Chose by `explore` (main exploration switch).
action = tf.cond(
pred=tf.constant(explore, dtype=tf.bool)
if isinstance(explore, bool) else explore,
true_fn=lambda: exploration_actions,
false_fn=lambda: deterministic_actions)
# Logp=always zero.
batch_size = tf.shape(deterministic_actions)[0]
logp = tf.zeros(shape=(batch_size, ), dtype=tf.float32)
# Increment `last_timestep` by 1 (or set to `timestep`).
assign_op = \
tf.assign_add(self.last_timestep, 1) if timestep is None else \
tf.assign(self.last_timestep, timestep)
with tf.control_dependencies([assign_op, ou_state_new]):
return action, logp
@override(GaussianNoise)
def _get_torch_exploration_action(self, action_dist, explore, timestep):
# Set last timestep or (if not given) increase by one.
self.last_timestep = timestep if timestep is not None else \
self.last_timestep + 1
# Apply exploration.
if explore:
# Random exploration phase.
if self.last_timestep <= self.random_timesteps:
action, _ = \
self.random_exploration.get_torch_exploration_action(
action_dist, explore=True)
# Apply base-scaled and time-annealed scaled OU-noise to
# deterministic actions.
else:
det_actions = action_dist.deterministic_sample()
scale = self.scale_schedule(self.last_timestep)
gaussian_sample = scale * torch.normal(
mean=torch.zeros(self.ou_state.size()), std=1.0) \
.to(self.device)
ou_new = self.ou_theta * -self.ou_state + \
self.ou_sigma * gaussian_sample
self.ou_state += ou_new
high_m_low = torch.from_numpy(
self.action_space.high - self.action_space.low). \
to(self.device)
high_m_low = torch.where(
torch.isinf(high_m_low),
torch.ones_like(high_m_low).to(self.device), high_m_low)
noise = scale * self.ou_base_scale * self.ou_state * high_m_low
action = torch.clamp(det_actions + noise,
self.action_space.low[0],
self.action_space.high[0])
# No exploration -> Return deterministic actions.
else:
action = action_dist.deterministic_sample()
# Logp=always zero.
logp = torch.zeros(
(action.size()[0], ), dtype=torch.float32, device=self.device)
return action, logp