ray/rllib/tests/test_multi_agent_env.py
Eric Liang dd70720578
[rllib] Rename sample_batch_size => rollout_fragment_length (#7503)
* bulk rename

* deprecation warn

* update doc

* update fig

* line length

* rename

* make pytest comptaible

* fix test

* fi sys

* rename

* wip

* fix more

* lint

* update svg

* comments

* lint

* fix use of batch steps
2020-03-14 12:05:04 -07:00

679 lines
25 KiB
Python

import gym
import random
import unittest
import ray
from ray.rllib.agents.pg import PGTrainer
from ray.rllib.agents.pg.pg_tf_policy import PGTFPolicy
from ray.rllib.agents.dqn.dqn_policy import DQNTFPolicy
from ray.rllib.optimizers import (SyncSamplesOptimizer, SyncReplayOptimizer,
AsyncGradientsOptimizer)
from ray.rllib.tests.test_rollout_worker import (MockEnv, MockEnv2, MockPolicy)
from ray.rllib.evaluation.rollout_worker import RolloutWorker
from ray.rllib.policy.tests.test_policy import TestPolicy
from ray.rllib.evaluation.metrics import collect_metrics
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.env.base_env import _MultiAgentEnvToBaseEnv
from ray.rllib.env.multi_agent_env import MultiAgentEnv
from ray.tune.registry import register_env
def one_hot(i, n):
out = [0.0] * n
out[i] = 1.0
return out
class BasicMultiAgent(MultiAgentEnv):
"""Env of N independent agents, each of which exits after 25 steps."""
def __init__(self, num):
self.agents = [MockEnv(25) for _ in range(num)]
self.dones = set()
self.observation_space = gym.spaces.Discrete(2)
self.action_space = gym.spaces.Discrete(2)
self.resetted = False
def reset(self):
self.resetted = True
self.dones = set()
return {i: a.reset() for i, a in enumerate(self.agents)}
def step(self, action_dict):
obs, rew, done, info = {}, {}, {}, {}
for i, action in action_dict.items():
obs[i], rew[i], done[i], info[i] = self.agents[i].step(action)
if done[i]:
self.dones.add(i)
done["__all__"] = len(self.dones) == len(self.agents)
return obs, rew, done, info
class EarlyDoneMultiAgent(MultiAgentEnv):
"""Env for testing when the env terminates (after agent 0 does)."""
def __init__(self):
self.agents = [MockEnv(3), MockEnv(5)]
self.dones = set()
self.last_obs = {}
self.last_rew = {}
self.last_done = {}
self.last_info = {}
self.i = 0
self.observation_space = gym.spaces.Discrete(10)
self.action_space = gym.spaces.Discrete(2)
def reset(self):
self.dones = set()
self.last_obs = {}
self.last_rew = {}
self.last_done = {}
self.last_info = {}
self.i = 0
for i, a in enumerate(self.agents):
self.last_obs[i] = a.reset()
self.last_rew[i] = None
self.last_done[i] = False
self.last_info[i] = {}
obs_dict = {self.i: self.last_obs[self.i]}
self.i = (self.i + 1) % len(self.agents)
return obs_dict
def step(self, action_dict):
assert len(self.dones) != len(self.agents)
for i, action in action_dict.items():
(self.last_obs[i], self.last_rew[i], self.last_done[i],
self.last_info[i]) = self.agents[i].step(action)
obs = {self.i: self.last_obs[self.i]}
rew = {self.i: self.last_rew[self.i]}
done = {self.i: self.last_done[self.i]}
info = {self.i: self.last_info[self.i]}
if done[self.i]:
rew[self.i] = 0
self.dones.add(self.i)
self.i = (self.i + 1) % len(self.agents)
done["__all__"] = len(self.dones) == len(self.agents) - 1
return obs, rew, done, info
class RoundRobinMultiAgent(MultiAgentEnv):
"""Env of N independent agents, each of which exits after 5 steps.
On each step() of the env, only one agent takes an action."""
def __init__(self, num, increment_obs=False):
if increment_obs:
# Observations are 0, 1, 2, 3... etc. as time advances
self.agents = [MockEnv2(5) for _ in range(num)]
else:
# Observations are all zeros
self.agents = [MockEnv(5) for _ in range(num)]
self.dones = set()
self.last_obs = {}
self.last_rew = {}
self.last_done = {}
self.last_info = {}
self.i = 0
self.num = num
self.observation_space = gym.spaces.Discrete(10)
self.action_space = gym.spaces.Discrete(2)
def reset(self):
self.dones = set()
self.last_obs = {}
self.last_rew = {}
self.last_done = {}
self.last_info = {}
self.i = 0
for i, a in enumerate(self.agents):
self.last_obs[i] = a.reset()
self.last_rew[i] = None
self.last_done[i] = False
self.last_info[i] = {}
obs_dict = {self.i: self.last_obs[self.i]}
self.i = (self.i + 1) % self.num
return obs_dict
def step(self, action_dict):
assert len(self.dones) != len(self.agents)
for i, action in action_dict.items():
(self.last_obs[i], self.last_rew[i], self.last_done[i],
self.last_info[i]) = self.agents[i].step(action)
obs = {self.i: self.last_obs[self.i]}
rew = {self.i: self.last_rew[self.i]}
done = {self.i: self.last_done[self.i]}
info = {self.i: self.last_info[self.i]}
if done[self.i]:
rew[self.i] = 0
self.dones.add(self.i)
self.i = (self.i + 1) % self.num
done["__all__"] = len(self.dones) == len(self.agents)
return obs, rew, done, info
def make_multiagent(env_name):
class MultiEnv(MultiAgentEnv):
def __init__(self, num):
self.agents = [gym.make(env_name) for _ in range(num)]
self.dones = set()
self.observation_space = self.agents[0].observation_space
self.action_space = self.agents[0].action_space
def reset(self):
self.dones = set()
return {i: a.reset() for i, a in enumerate(self.agents)}
def step(self, action_dict):
obs, rew, done, info = {}, {}, {}, {}
for i, action in action_dict.items():
obs[i], rew[i], done[i], info[i] = self.agents[i].step(action)
if done[i]:
self.dones.add(i)
done["__all__"] = len(self.dones) == len(self.agents)
return obs, rew, done, info
return MultiEnv
MultiCartpole = make_multiagent("CartPole-v0")
MultiMountainCar = make_multiagent("MountainCarContinuous-v0")
class TestMultiAgentEnv(unittest.TestCase):
def setUp(self) -> None:
ray.init(num_cpus=4)
def tearDown(self) -> None:
ray.shutdown()
def test_basic_mock(self):
env = BasicMultiAgent(4)
obs = env.reset()
self.assertEqual(obs, {0: 0, 1: 0, 2: 0, 3: 0})
for _ in range(24):
obs, rew, done, info = env.step({0: 0, 1: 0, 2: 0, 3: 0})
self.assertEqual(obs, {0: 0, 1: 0, 2: 0, 3: 0})
self.assertEqual(rew, {0: 1, 1: 1, 2: 1, 3: 1})
self.assertEqual(done, {
0: False,
1: False,
2: False,
3: False,
"__all__": False
})
obs, rew, done, info = env.step({0: 0, 1: 0, 2: 0, 3: 0})
self.assertEqual(done, {
0: True,
1: True,
2: True,
3: True,
"__all__": True
})
def test_round_robin_mock(self):
env = RoundRobinMultiAgent(2)
obs = env.reset()
self.assertEqual(obs, {0: 0})
for _ in range(5):
obs, rew, done, info = env.step({0: 0})
self.assertEqual(obs, {1: 0})
self.assertEqual(done["__all__"], False)
obs, rew, done, info = env.step({1: 0})
self.assertEqual(obs, {0: 0})
self.assertEqual(done["__all__"], False)
obs, rew, done, info = env.step({0: 0})
self.assertEqual(done["__all__"], True)
def test_no_reset_until_poll(self):
env = _MultiAgentEnvToBaseEnv(lambda v: BasicMultiAgent(2), [], 1)
self.assertFalse(env.get_unwrapped()[0].resetted)
env.poll()
self.assertTrue(env.get_unwrapped()[0].resetted)
def test_vectorize_basic(self):
env = _MultiAgentEnvToBaseEnv(lambda v: BasicMultiAgent(2), [], 2)
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
self.assertEqual(rew, {0: {0: None, 1: None}, 1: {0: None, 1: None}})
self.assertEqual(
dones, {
0: {
0: False,
1: False,
"__all__": False
},
1: {
0: False,
1: False,
"__all__": False
}
})
for _ in range(24):
env.send_actions({0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
self.assertEqual(rew, {0: {0: 1, 1: 1}, 1: {0: 1, 1: 1}})
self.assertEqual(
dones, {
0: {
0: False,
1: False,
"__all__": False
},
1: {
0: False,
1: False,
"__all__": False
}
})
env.send_actions({0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(
dones, {
0: {
0: True,
1: True,
"__all__": True
},
1: {
0: True,
1: True,
"__all__": True
}
})
# Reset processing
self.assertRaises(
ValueError, lambda: env.send_actions({
0: {
0: 0,
1: 0
},
1: {
0: 0,
1: 0
}
}))
self.assertEqual(env.try_reset(0), {0: 0, 1: 0})
self.assertEqual(env.try_reset(1), {0: 0, 1: 0})
env.send_actions({0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0, 1: 0}, 1: {0: 0, 1: 0}})
self.assertEqual(rew, {0: {0: 1, 1: 1}, 1: {0: 1, 1: 1}})
self.assertEqual(
dones, {
0: {
0: False,
1: False,
"__all__": False
},
1: {
0: False,
1: False,
"__all__": False
}
})
def test_vectorize_round_robin(self):
env = _MultiAgentEnvToBaseEnv(lambda v: RoundRobinMultiAgent(2), [], 2)
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0}, 1: {0: 0}})
self.assertEqual(rew, {0: {0: None}, 1: {0: None}})
env.send_actions({0: {0: 0}, 1: {0: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {1: 0}, 1: {1: 0}})
env.send_actions({0: {1: 0}, 1: {1: 0}})
obs, rew, dones, _, _ = env.poll()
self.assertEqual(obs, {0: {0: 0}, 1: {0: 0}})
def test_multi_agent_sample(self):
act_space = gym.spaces.Discrete(2)
obs_space = gym.spaces.Discrete(2)
ev = RolloutWorker(
env_creator=lambda _: BasicMultiAgent(5),
policy={
"p0": (MockPolicy, obs_space, act_space, {}),
"p1": (MockPolicy, obs_space, act_space, {}),
},
policy_mapping_fn=lambda agent_id: "p{}".format(agent_id % 2),
rollout_fragment_length=50)
batch = ev.sample()
self.assertEqual(batch.count, 50)
self.assertEqual(batch.policy_batches["p0"].count, 150)
self.assertEqual(batch.policy_batches["p1"].count, 100)
self.assertEqual(batch.policy_batches["p0"]["t"].tolist(),
list(range(25)) * 6)
def test_multi_agent_sample_sync_remote(self):
# Allow to be run via Unittest.
ray.init(num_cpus=4, ignore_reinit_error=True)
act_space = gym.spaces.Discrete(2)
obs_space = gym.spaces.Discrete(2)
ev = RolloutWorker(
env_creator=lambda _: BasicMultiAgent(5),
policy={
"p0": (MockPolicy, obs_space, act_space, {}),
"p1": (MockPolicy, obs_space, act_space, {}),
},
policy_mapping_fn=lambda agent_id: "p{}".format(agent_id % 2),
rollout_fragment_length=50,
num_envs=4,
remote_worker_envs=True,
remote_env_batch_wait_ms=99999999)
batch = ev.sample()
self.assertEqual(batch.count, 200)
def test_multi_agent_sample_async_remote(self):
# Allow to be run via Unittest.
ray.init(num_cpus=4, ignore_reinit_error=True)
act_space = gym.spaces.Discrete(2)
obs_space = gym.spaces.Discrete(2)
ev = RolloutWorker(
env_creator=lambda _: BasicMultiAgent(5),
policy={
"p0": (MockPolicy, obs_space, act_space, {}),
"p1": (MockPolicy, obs_space, act_space, {}),
},
policy_mapping_fn=lambda agent_id: "p{}".format(agent_id % 2),
rollout_fragment_length=50,
num_envs=4,
remote_worker_envs=True)
batch = ev.sample()
self.assertEqual(batch.count, 200)
def test_multi_agent_sample_with_horizon(self):
act_space = gym.spaces.Discrete(2)
obs_space = gym.spaces.Discrete(2)
ev = RolloutWorker(
env_creator=lambda _: BasicMultiAgent(5),
policy={
"p0": (MockPolicy, obs_space, act_space, {}),
"p1": (MockPolicy, obs_space, act_space, {}),
},
policy_mapping_fn=lambda agent_id: "p{}".format(agent_id % 2),
episode_horizon=10, # test with episode horizon set
rollout_fragment_length=50)
batch = ev.sample()
self.assertEqual(batch.count, 50)
def test_sample_from_early_done_env(self):
act_space = gym.spaces.Discrete(2)
obs_space = gym.spaces.Discrete(2)
ev = RolloutWorker(
env_creator=lambda _: EarlyDoneMultiAgent(),
policy={
"p0": (MockPolicy, obs_space, act_space, {}),
"p1": (MockPolicy, obs_space, act_space, {}),
},
policy_mapping_fn=lambda agent_id: "p{}".format(agent_id % 2),
batch_mode="complete_episodes",
rollout_fragment_length=1)
self.assertRaisesRegexp(ValueError,
".*don't have a last observation.*",
lambda: ev.sample())
def test_multi_agent_sample_round_robin(self):
act_space = gym.spaces.Discrete(2)
obs_space = gym.spaces.Discrete(10)
ev = RolloutWorker(
env_creator=lambda _: RoundRobinMultiAgent(5, increment_obs=True),
policy={
"p0": (MockPolicy, obs_space, act_space, {}),
},
policy_mapping_fn=lambda agent_id: "p0",
rollout_fragment_length=50)
batch = ev.sample()
self.assertEqual(batch.count, 50)
# since we round robin introduce agents into the env, some of the env
# steps don't count as proper transitions
self.assertEqual(batch.policy_batches["p0"].count, 42)
self.assertEqual(batch.policy_batches["p0"]["obs"].tolist()[:10], [
one_hot(0, 10),
one_hot(1, 10),
one_hot(2, 10),
one_hot(3, 10),
one_hot(4, 10),
] * 2)
self.assertEqual(batch.policy_batches["p0"]["new_obs"].tolist()[:10], [
one_hot(1, 10),
one_hot(2, 10),
one_hot(3, 10),
one_hot(4, 10),
one_hot(5, 10),
] * 2)
self.assertEqual(batch.policy_batches["p0"]["rewards"].tolist()[:10],
[100, 100, 100, 100, 0] * 2)
self.assertEqual(batch.policy_batches["p0"]["dones"].tolist()[:10],
[False, False, False, False, True] * 2)
self.assertEqual(batch.policy_batches["p0"]["t"].tolist()[:10],
[4, 9, 14, 19, 24, 5, 10, 15, 20, 25])
def test_custom_rnn_state_values(self):
h = {"some": {"arbitrary": "structure", "here": [1, 2, 3]}}
class StatefulPolicy(TestPolicy):
def compute_actions(self,
obs_batch,
state_batches=None,
prev_action_batch=None,
prev_reward_batch=None,
episodes=None,
explore=True,
timestep=None,
**kwargs):
return [0] * len(obs_batch), [[h] * len(obs_batch)], {}
def get_initial_state(self):
return [{}] # empty dict
ev = RolloutWorker(
env_creator=lambda _: gym.make("CartPole-v0"),
policy=StatefulPolicy,
rollout_fragment_length=5)
batch = ev.sample()
self.assertEqual(batch.count, 5)
self.assertEqual(batch["state_in_0"][0], {})
self.assertEqual(batch["state_out_0"][0], h)
self.assertEqual(batch["state_in_0"][1], h)
self.assertEqual(batch["state_out_0"][1], h)
def test_returning_model_based_rollouts_data(self):
class ModelBasedPolicy(PGTFPolicy):
def compute_actions(self,
obs_batch,
state_batches,
prev_action_batch=None,
prev_reward_batch=None,
episodes=None,
**kwargs):
# Pretend we did a model-based rollout and want to return
# the extra trajectory.
builder = episodes[0].new_batch_builder()
rollout_id = random.randint(0, 10000)
for t in range(5):
builder.add_values(
agent_id="extra_0",
policy_id="p1", # use p1 so we can easily check it
t=t,
eps_id=rollout_id, # new id for each rollout
obs=obs_batch[0],
actions=0,
rewards=0,
dones=t == 4,
infos={},
new_obs=obs_batch[0])
batch = builder.build_and_reset(episode=None)
episodes[0].add_extra_batch(batch)
# Just return zeros for actions
return [0] * len(obs_batch), [], {}
single_env = gym.make("CartPole-v0")
obs_space = single_env.observation_space
act_space = single_env.action_space
ev = RolloutWorker(
env_creator=lambda _: MultiCartpole(2),
policy={
"p0": (ModelBasedPolicy, obs_space, act_space, {}),
"p1": (ModelBasedPolicy, obs_space, act_space, {}),
},
policy_mapping_fn=lambda agent_id: "p0",
rollout_fragment_length=5)
batch = ev.sample()
self.assertEqual(batch.count, 5)
self.assertEqual(batch.policy_batches["p0"].count, 10)
self.assertEqual(batch.policy_batches["p1"].count, 25)
def test_train_multi_cartpole_single_policy(self):
n = 10
register_env("multi_cartpole", lambda _: MultiCartpole(n))
pg = PGTrainer(env="multi_cartpole", config={"num_workers": 0})
for i in range(100):
result = pg.train()
print("Iteration {}, reward {}, timesteps {}".format(
i, result["episode_reward_mean"], result["timesteps_total"]))
if result["episode_reward_mean"] >= 50 * n:
return
raise Exception("failed to improve reward")
def test_train_multi_cartpole_multi_policy(self):
n = 10
register_env("multi_cartpole", lambda _: MultiCartpole(n))
single_env = gym.make("CartPole-v0")
def gen_policy():
config = {
"gamma": random.choice([0.5, 0.8, 0.9, 0.95, 0.99]),
"n_step": random.choice([1, 2, 3, 4, 5]),
}
obs_space = single_env.observation_space
act_space = single_env.action_space
return (None, obs_space, act_space, config)
pg = PGTrainer(
env="multi_cartpole",
config={
"num_workers": 0,
"multiagent": {
"policies": {
"policy_1": gen_policy(),
"policy_2": gen_policy(),
},
"policy_mapping_fn": lambda agent_id: "policy_1",
},
})
# Just check that it runs without crashing
for i in range(10):
result = pg.train()
print("Iteration {}, reward {}, timesteps {}".format(
i, result["episode_reward_mean"], result["timesteps_total"]))
self.assertTrue(
pg.compute_action([0, 0, 0, 0], policy_id="policy_1") in [0, 1])
self.assertTrue(
pg.compute_action([0, 0, 0, 0], policy_id="policy_2") in [0, 1])
self.assertRaises(
KeyError,
lambda: pg.compute_action([0, 0, 0, 0], policy_id="policy_3"))
def _test_with_optimizer(self, optimizer_cls):
n = 3
env = gym.make("CartPole-v0")
act_space = env.action_space
obs_space = env.observation_space
dqn_config = {"gamma": 0.95, "n_step": 3}
if optimizer_cls == SyncReplayOptimizer:
# TODO: support replay with non-DQN graphs. Currently this can't
# happen since the replay buffer doesn't encode extra fields like
# "advantages" that PG uses.
policies = {
"p1": (DQNTFPolicy, obs_space, act_space, dqn_config),
"p2": (DQNTFPolicy, obs_space, act_space, dqn_config),
}
else:
policies = {
"p1": (PGTFPolicy, obs_space, act_space, {}),
"p2": (DQNTFPolicy, obs_space, act_space, dqn_config),
}
worker = RolloutWorker(
env_creator=lambda _: MultiCartpole(n),
policy=policies,
policy_mapping_fn=lambda agent_id: ["p1", "p2"][agent_id % 2],
rollout_fragment_length=50)
if optimizer_cls == AsyncGradientsOptimizer:
def policy_mapper(agent_id):
return ["p1", "p2"][agent_id % 2]
remote_workers = [
RolloutWorker.as_remote().remote(
env_creator=lambda _: MultiCartpole(n),
policy=policies,
policy_mapping_fn=policy_mapper,
rollout_fragment_length=50)
]
else:
remote_workers = []
workers = WorkerSet._from_existing(worker, remote_workers)
optimizer = optimizer_cls(workers)
for i in range(200):
optimizer.step()
result = collect_metrics(worker, remote_workers)
if i % 20 == 0:
def do_update(p):
if isinstance(p, DQNTFPolicy):
p.update_target()
worker.foreach_policy(lambda p, _: do_update(p))
print("Iter {}, rew {}".format(i,
result["policy_reward_mean"]))
print("Total reward", result["episode_reward_mean"])
if result["episode_reward_mean"] >= 25 * n:
return
print(result)
raise Exception("failed to improve reward")
def test_multi_agent_sync_optimizer(self):
self._test_with_optimizer(SyncSamplesOptimizer)
def test_multi_agent_async_gradients_optimizer(self):
# Allow to be run via Unittest.
ray.init(num_cpus=4, ignore_reinit_error=True)
self._test_with_optimizer(AsyncGradientsOptimizer)
def test_multi_agent_replay_optimizer(self):
self._test_with_optimizer(SyncReplayOptimizer)
def test_train_multi_cartpole_many_policies(self):
n = 20
env = gym.make("CartPole-v0")
act_space = env.action_space
obs_space = env.observation_space
policies = {}
for i in range(20):
policies["pg_{}".format(i)] = (PGTFPolicy, obs_space, act_space,
{})
policy_ids = list(policies.keys())
worker = RolloutWorker(
env_creator=lambda _: MultiCartpole(n),
policy=policies,
policy_mapping_fn=lambda agent_id: random.choice(policy_ids),
rollout_fragment_length=100)
workers = WorkerSet._from_existing(worker, [])
optimizer = SyncSamplesOptimizer(workers)
for i in range(100):
optimizer.step()
result = collect_metrics(worker)
print("Iteration {}, rew {}".format(i,
result["policy_reward_mean"]))
print("Total reward", result["episode_reward_mean"])
if result["episode_reward_mean"] >= 25 * n:
return
raise Exception("failed to improve reward")
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))