ray/rllib/env/remote_vector_env.py

138 lines
4.7 KiB
Python

import logging
from typing import Tuple, Callable, Optional
import ray
from ray.rllib.env.base_env import BaseEnv, _DUMMY_AGENT_ID, ASYNC_RESET_RETURN
from ray.rllib.utils.annotations import override, PublicAPI
from ray.rllib.utils.typing import MultiEnvDict, EnvType, EnvID, MultiAgentDict
logger = logging.getLogger(__name__)
@PublicAPI
class RemoteVectorEnv(BaseEnv):
"""Vector env that executes envs in remote workers.
This provides dynamic batching of inference as observations are returned
from the remote simulator actors. Both single and multi-agent child envs
are supported, and envs can be stepped synchronously or async.
You shouldn't need to instantiate this class directly. It's automatically
inserted when you use the `remote_worker_envs` option for Trainers.
"""
def __init__(self, make_env: Callable[[int], EnvType], num_envs: int,
multiagent: bool, remote_env_batch_wait_ms: int):
self.make_local_env = make_env
self.num_envs = num_envs
self.multiagent = multiagent
self.poll_timeout = remote_env_batch_wait_ms / 1000
self.actors = None # lazy init
self.pending = None # lazy init
@override(BaseEnv)
def poll(self) -> Tuple[MultiEnvDict, MultiEnvDict, MultiEnvDict,
MultiEnvDict, MultiEnvDict]:
if self.actors is None:
def make_remote_env(i):
logger.info("Launching env {} in remote actor".format(i))
if self.multiagent:
return _RemoteMultiAgentEnv.remote(self.make_local_env, i)
else:
return _RemoteSingleAgentEnv.remote(self.make_local_env, i)
self.actors = [make_remote_env(i) for i in range(self.num_envs)]
if self.pending is None:
self.pending = {a.reset.remote(): a for a in self.actors}
# each keyed by env_id in [0, num_remote_envs)
obs, rewards, dones, infos = {}, {}, {}, {}
ready = []
# Wait for at least 1 env to be ready here
while not ready:
ready, _ = ray.wait(
list(self.pending),
num_returns=len(self.pending),
timeout=self.poll_timeout)
# Get and return observations for each of the ready envs
env_ids = set()
for obj_ref in ready:
actor = self.pending.pop(obj_ref)
env_id = self.actors.index(actor)
env_ids.add(env_id)
ob, rew, done, info = ray.get(obj_ref)
obs[env_id] = ob
rewards[env_id] = rew
dones[env_id] = done
infos[env_id] = info
logger.debug("Got obs batch for actors {}".format(env_ids))
return obs, rewards, dones, infos, {}
@PublicAPI
def send_actions(self, action_dict: MultiEnvDict) -> None:
for env_id, actions in action_dict.items():
actor = self.actors[env_id]
obj_ref = actor.step.remote(actions)
self.pending[obj_ref] = actor
@PublicAPI
def try_reset(self,
env_id: Optional[EnvID] = None) -> Optional[MultiAgentDict]:
actor = self.actors[env_id]
obj_ref = actor.reset.remote()
self.pending[obj_ref] = actor
return ASYNC_RESET_RETURN
@PublicAPI
def stop(self) -> None:
if self.actors is not None:
for actor in self.actors:
actor.__ray_terminate__.remote()
@ray.remote(num_cpus=0)
class _RemoteMultiAgentEnv:
"""Wrapper class for making a multi-agent env a remote actor."""
def __init__(self, make_env, i):
self.env = make_env(i)
def reset(self):
obs = self.env.reset()
# each keyed by agent_id in the env
rew = {agent_id: 0 for agent_id in obs.keys()}
info = {agent_id: {} for agent_id in obs.keys()}
done = {"__all__": False}
return obs, rew, done, info
def step(self, action_dict):
return self.env.step(action_dict)
@ray.remote(num_cpus=0)
class _RemoteSingleAgentEnv:
"""Wrapper class for making a gym env a remote actor."""
def __init__(self, make_env, i):
self.env = make_env(i)
def reset(self):
obs = {_DUMMY_AGENT_ID: self.env.reset()}
rew = {agent_id: 0 for agent_id in obs.keys()}
info = {agent_id: {} for agent_id in obs.keys()}
done = {"__all__": False}
return obs, rew, done, info
def step(self, action):
obs, rew, done, info = self.env.step(action[_DUMMY_AGENT_ID])
obs, rew, done, info = [{
_DUMMY_AGENT_ID: x
} for x in [obs, rew, done, info]]
done["__all__"] = done[_DUMMY_AGENT_ID]
return obs, rew, done, info