mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
124 lines
4 KiB
Python
124 lines
4 KiB
Python
import argparse
|
|
import os
|
|
import random
|
|
|
|
import ray
|
|
from ray.rllib.algorithms.algorithm import Algorithm
|
|
from ray.rllib.examples.models.eager_model import EagerModel
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
from ray import tune
|
|
|
|
# Always import tensorflow using this utility function:
|
|
tf1, tf, tfv = try_import_tf()
|
|
# tf1: The installed tf1.x package OR the tf.compat.v1 module within
|
|
# a 2.x tf installation.
|
|
# tf: The installed tf package (whatever tf version was installed).
|
|
# tfv: The tf version int (either 1 or 2).
|
|
|
|
# To enable eager mode, do:
|
|
# >> tf1.enable_eager_execution()
|
|
# >> x = tf.Variable(0.0)
|
|
# >> x.numpy()
|
|
# 0.0
|
|
|
|
# RLlib will automatically enable eager mode, if you specify your "framework"
|
|
# config key to be either "tfe" or "tf2".
|
|
# If you would like to remain in tf static-graph mode, but still use tf2.x's
|
|
# new APIs (some of which are not supported by tf1.x), specify your "framework"
|
|
# as "tf" and check for the version (tfv) to be 2:
|
|
|
|
# Example:
|
|
# >> def dense(x, W, b):
|
|
# .. return tf.nn.sigmoid(tf.matmul(x, W) + b)
|
|
#
|
|
# >> @tf.function
|
|
# >> def multilayer_perceptron(x, w0, b0):
|
|
# .. return dense(x, w0, b0)
|
|
|
|
# Also be careful to distinguish between tf1 and tf in your code. For example,
|
|
# to create a placeholder:
|
|
# >> tf1.placeholder(tf.float32, (2, )) # <- must use `tf1` here
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=200, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
|
|
)
|
|
|
|
|
|
def policy_gradient_loss(policy, model, dist_class, train_batch):
|
|
"""Example of using embedded eager execution in a custom loss.
|
|
|
|
Here `compute_penalty` prints the actions and rewards for debugging, and
|
|
also computes a (dummy) penalty term to add to the loss.
|
|
"""
|
|
|
|
def compute_penalty(actions, rewards):
|
|
assert tf.executing_eagerly()
|
|
penalty = tf.reduce_mean(tf.cast(actions, tf.float32))
|
|
if random.random() > 0.9:
|
|
print("The eagerly computed penalty is", penalty, actions, rewards)
|
|
return penalty
|
|
|
|
logits, _ = model(train_batch)
|
|
action_dist = dist_class(logits, model)
|
|
|
|
actions = train_batch[SampleBatch.ACTIONS]
|
|
rewards = train_batch[SampleBatch.REWARDS]
|
|
penalty = tf.py_function(compute_penalty, [actions, rewards], Tout=tf.float32)
|
|
|
|
return penalty - tf.reduce_mean(action_dist.logp(actions) * rewards)
|
|
|
|
|
|
# <class 'ray.rllib.policy.tf_policy_template.MyTFPolicy'>
|
|
MyTFPolicy = build_tf_policy(
|
|
name="MyTFPolicy",
|
|
loss_fn=policy_gradient_loss,
|
|
)
|
|
|
|
|
|
# Create a new Trainer using the Policy defined above.
|
|
class MyTrainer(Algorithm):
|
|
def get_default_policy_class(self, config):
|
|
return MyTFPolicy
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ray.init()
|
|
args = parser.parse_args()
|
|
ModelCatalog.register_custom_model("eager_model", EagerModel)
|
|
|
|
config = {
|
|
"env": "CartPole-v0",
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_workers": 0,
|
|
"model": {"custom_model": "eager_model"},
|
|
"framework": "tf2",
|
|
}
|
|
stop = {
|
|
"timesteps_total": args.stop_timesteps,
|
|
"training_iteration": args.stop_iters,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
results = tune.run(MyTrainer, stop=stop, config=config, verbose=1)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|