mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
625 lines
25 KiB
Python
625 lines
25 KiB
Python
import functools
|
|
import gym
|
|
import numpy as np
|
|
import time
|
|
from typing import Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import ray
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
|
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
|
|
from ray.rllib.policy.policy import Policy, LEARNER_STATS_KEY
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.rnn_sequencing import pad_batch_to_sequences_of_same_size
|
|
from ray.rllib.policy.trajectory_view import get_trajectory_view
|
|
from ray.rllib.utils import force_list
|
|
from ray.rllib.utils.annotations import override, DeveloperAPI
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.schedules import ConstantSchedule, PiecewiseSchedule
|
|
from ray.rllib.utils.torch_ops import convert_to_non_torch_type, \
|
|
convert_to_torch_tensor
|
|
from ray.rllib.utils.tracking_dict import UsageTrackingDict
|
|
from ray.rllib.utils.types import AgentID, ModelGradients, ModelWeights, \
|
|
TensorType, TrainerConfigDict
|
|
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
@DeveloperAPI
|
|
class TorchPolicy(Policy):
|
|
"""Template for a PyTorch policy and loss to use with RLlib.
|
|
|
|
This is similar to TFPolicy, but for PyTorch.
|
|
|
|
Attributes:
|
|
observation_space (gym.Space): observation space of the policy.
|
|
action_space (gym.Space): action space of the policy.
|
|
config (dict): config of the policy.
|
|
model (TorchModel): Torch model instance.
|
|
dist_class (type): Torch action distribution class.
|
|
"""
|
|
|
|
@DeveloperAPI
|
|
def __init__(self,
|
|
observation_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
config: TrainerConfigDict,
|
|
*,
|
|
model: ModelV2,
|
|
loss: Callable[
|
|
[Policy, ModelV2, type, SampleBatch], TensorType],
|
|
action_distribution_class: TorchDistributionWrapper,
|
|
action_sampler_fn: Callable[
|
|
[TensorType, List[TensorType]], Tuple[
|
|
TensorType, TensorType]] = None,
|
|
action_distribution_fn: Optional[Callable[
|
|
[Policy, ModelV2, TensorType, TensorType, TensorType],
|
|
Tuple[TensorType, type, List[TensorType]]]] = None,
|
|
max_seq_len: int = 20,
|
|
get_batch_divisibility_req: Optional[int] = None):
|
|
"""Build a policy from policy and loss torch modules.
|
|
|
|
Note that model will be placed on GPU device if CUDA_VISIBLE_DEVICES
|
|
is set. Only single GPU is supported for now.
|
|
|
|
Args:
|
|
observation_space (gym.spaces.Space): observation space of the
|
|
policy.
|
|
action_space (gym.spaces.Space): action space of the policy.
|
|
config (TrainerConfigDict): The Policy config dict.
|
|
model (ModelV2): PyTorch policy module. Given observations as
|
|
input, this module must return a list of outputs where the
|
|
first item is action logits, and the rest can be any value.
|
|
loss (Callable[[Policy, ModelV2, type, SampleBatch], TensorType]):
|
|
Function that takes (policy, model, dist_class, train_batch)
|
|
and returns a single scalar loss.
|
|
action_distribution_class (TorchDistributionWrapper): Class for
|
|
a torch action distribution.
|
|
action_sampler_fn (Callable[[TensorType, List[TensorType]],
|
|
Tuple[TensorType, TensorType]]): A callable returning a
|
|
sampled action and its log-likelihood given Policy, ModelV2,
|
|
input_dict, explore, timestep, and is_training.
|
|
action_distribution_fn (Optional[Callable[[Policy, ModelV2,
|
|
Dict[str, TensorType], TensorType, TensorType],
|
|
Tuple[TensorType, type, List[TensorType]]]]): A callable
|
|
returning distribution inputs (parameters), a dist-class to
|
|
generate an action distribution object from, and
|
|
internal-state outputs (or an empty list if not applicable).
|
|
Note: No Exploration hooks have to be called from within
|
|
`action_distribution_fn`. It's should only perform a simple
|
|
forward pass through some model.
|
|
If None, pass inputs through `self.model()` to get distribution
|
|
inputs.
|
|
The callable takes as inputs: Policy, ModelV2, input_dict,
|
|
explore, timestep, is_training.
|
|
max_seq_len (int): Max sequence length for LSTM training.
|
|
get_batch_divisibility_req (Optional[Callable[[Policy], int]]]):
|
|
Optional callable that returns the divisibility requirement
|
|
for sample batches given the Policy.
|
|
"""
|
|
self.framework = "torch"
|
|
super().__init__(observation_space, action_space, config)
|
|
if torch.cuda.is_available() and ray.get_gpu_ids():
|
|
self.device = torch.device("cuda")
|
|
else:
|
|
self.device = torch.device("cpu")
|
|
self.model = model.to(self.device)
|
|
self.exploration = self._create_exploration()
|
|
self.unwrapped_model = model # used to support DistributedDataParallel
|
|
self._loss = loss
|
|
self._optimizers = force_list(self.optimizer())
|
|
|
|
self.dist_class = action_distribution_class
|
|
self.action_sampler_fn = action_sampler_fn
|
|
self.action_distribution_fn = action_distribution_fn
|
|
|
|
# If set, means we are using distributed allreduce during learning.
|
|
self.distributed_world_size = None
|
|
|
|
self.max_seq_len = max_seq_len
|
|
self.batch_divisibility_req = \
|
|
get_batch_divisibility_req(self) if get_batch_divisibility_req \
|
|
else 1
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def compute_actions(
|
|
self,
|
|
obs_batch: Union[List[TensorType], TensorType],
|
|
state_batches: Optional[List[TensorType]] = None,
|
|
prev_action_batch: Union[List[TensorType], TensorType] = None,
|
|
prev_reward_batch: Union[List[TensorType], TensorType] = None,
|
|
info_batch: Optional[Dict[str, list]] = None,
|
|
episodes: Optional[List["MultiAgentEpisode"]] = None,
|
|
explore: Optional[bool] = None,
|
|
timestep: Optional[int] = None,
|
|
**kwargs) -> \
|
|
Tuple[TensorType, List[TensorType], Dict[str, TensorType]]:
|
|
|
|
explore = explore if explore is not None else self.config["explore"]
|
|
timestep = timestep if timestep is not None else self.global_timestep
|
|
|
|
with torch.no_grad():
|
|
seq_lens = torch.ones(len(obs_batch), dtype=torch.int32)
|
|
input_dict = self._lazy_tensor_dict({
|
|
SampleBatch.CUR_OBS: np.asarray(obs_batch),
|
|
"is_training": False,
|
|
})
|
|
if prev_action_batch is not None:
|
|
input_dict[SampleBatch.PREV_ACTIONS] = \
|
|
np.asarray(prev_action_batch)
|
|
if prev_reward_batch is not None:
|
|
input_dict[SampleBatch.PREV_REWARDS] = \
|
|
np.asarray(prev_reward_batch)
|
|
state_batches = [
|
|
convert_to_torch_tensor(s, self.device)
|
|
for s in (state_batches or [])
|
|
]
|
|
actions, state_out, extra_fetches, logp = \
|
|
self._compute_action_helper(
|
|
input_dict, state_batches, seq_lens, explore, timestep)
|
|
|
|
# Action-logp and action-prob.
|
|
if logp is not None:
|
|
logp = convert_to_non_torch_type(logp)
|
|
extra_fetches[SampleBatch.ACTION_PROB] = np.exp(logp)
|
|
extra_fetches[SampleBatch.ACTION_LOGP] = logp
|
|
|
|
return convert_to_non_torch_type(
|
|
(actions, state_out, extra_fetches))
|
|
|
|
@override(Policy)
|
|
def compute_actions_from_trajectories(
|
|
self,
|
|
trajectories: List["Trajectory"],
|
|
other_trajectories: Optional[Dict[AgentID, "Trajectory"]] = None,
|
|
explore: bool = None,
|
|
timestep: Optional[int] = None,
|
|
**kwargs) -> \
|
|
Tuple[TensorType, List[TensorType], Dict[str, TensorType]]:
|
|
|
|
explore = explore if explore is not None else self.config["explore"]
|
|
timestep = timestep if timestep is not None else self.global_timestep
|
|
|
|
with torch.no_grad():
|
|
# Create a view and pass that to Model as `input_dict`.
|
|
input_dict = self._lazy_tensor_dict(get_trajectory_view(
|
|
self.model, trajectories, is_training=False))
|
|
# TODO: (sven) support RNNs w/ fast sampling.
|
|
state_batches = []
|
|
seq_lens = None
|
|
|
|
actions, state_out, extra_fetches, logp = \
|
|
self._compute_action_helper(
|
|
input_dict, state_batches, seq_lens, explore, timestep)
|
|
|
|
# Leave outputs as is (torch.Tensors): Action-logp and action-prob.
|
|
if logp is not None:
|
|
extra_fetches[SampleBatch.ACTION_PROB] = torch.exp(logp)
|
|
extra_fetches[SampleBatch.ACTION_LOGP] = logp
|
|
|
|
return actions, state_out, extra_fetches
|
|
|
|
def _compute_action_helper(self, input_dict, state_batches, seq_lens,
|
|
explore, timestep):
|
|
"""Shared forward pass logic (w/ and w/o trajectory view API).
|
|
|
|
Returns:
|
|
Tuple:
|
|
- actions, state_out, extra_fetches, logp.
|
|
"""
|
|
if self.action_sampler_fn:
|
|
action_dist = dist_inputs = None
|
|
state_out = []
|
|
actions, logp = self.action_sampler_fn(
|
|
self,
|
|
self.model,
|
|
input_dict[SampleBatch.CUR_OBS],
|
|
explore=explore,
|
|
timestep=timestep)
|
|
else:
|
|
# Call the exploration before_compute_actions hook.
|
|
self.exploration.before_compute_actions(
|
|
explore=explore, timestep=timestep)
|
|
if self.action_distribution_fn:
|
|
dist_inputs, dist_class, state_out = \
|
|
self.action_distribution_fn(
|
|
self,
|
|
self.model,
|
|
input_dict[SampleBatch.CUR_OBS],
|
|
explore=explore,
|
|
timestep=timestep,
|
|
is_training=False)
|
|
else:
|
|
dist_class = self.dist_class
|
|
dist_inputs, state_out = self.model(
|
|
input_dict, state_batches, seq_lens)
|
|
|
|
if not (isinstance(dist_class, functools.partial)
|
|
or issubclass(dist_class, TorchDistributionWrapper)):
|
|
raise ValueError(
|
|
"`dist_class` ({}) not a TorchDistributionWrapper "
|
|
"subclass! Make sure your `action_distribution_fn` or "
|
|
"`make_model_and_action_dist` return a correct "
|
|
"distribution class.".format(dist_class.__name__))
|
|
action_dist = dist_class(dist_inputs, self.model)
|
|
|
|
# Get the exploration action from the forward results.
|
|
actions, logp = \
|
|
self.exploration.get_exploration_action(
|
|
action_distribution=action_dist,
|
|
timestep=timestep,
|
|
explore=explore)
|
|
|
|
input_dict[SampleBatch.ACTIONS] = actions
|
|
|
|
# Add default and custom fetches.
|
|
extra_fetches = self.extra_action_out(input_dict, state_batches,
|
|
self.model, action_dist)
|
|
|
|
# Action-dist inputs.
|
|
if dist_inputs is not None:
|
|
extra_fetches[SampleBatch.ACTION_DIST_INPUTS] = dist_inputs
|
|
|
|
return actions, state_out, extra_fetches, logp
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def compute_log_likelihoods(
|
|
self,
|
|
actions: Union[List[TensorType], TensorType],
|
|
obs_batch: Union[List[TensorType], TensorType],
|
|
state_batches: Optional[List[TensorType]] = None,
|
|
prev_action_batch: Optional[
|
|
Union[List[TensorType], TensorType]] = None,
|
|
prev_reward_batch: Optional[
|
|
Union[List[TensorType], TensorType]] = None) -> TensorType:
|
|
|
|
if self.action_sampler_fn and self.action_distribution_fn is None:
|
|
raise ValueError("Cannot compute log-prob/likelihood w/o an "
|
|
"`action_distribution_fn` and a provided "
|
|
"`action_sampler_fn`!")
|
|
|
|
with torch.no_grad():
|
|
input_dict = self._lazy_tensor_dict({
|
|
SampleBatch.CUR_OBS: obs_batch,
|
|
SampleBatch.ACTIONS: actions
|
|
})
|
|
if prev_action_batch is not None:
|
|
input_dict[SampleBatch.PREV_ACTIONS] = prev_action_batch
|
|
if prev_reward_batch is not None:
|
|
input_dict[SampleBatch.PREV_REWARDS] = prev_reward_batch
|
|
seq_lens = torch.ones(len(obs_batch), dtype=torch.int32)
|
|
|
|
# Exploration hook before each forward pass.
|
|
self.exploration.before_compute_actions(explore=False)
|
|
|
|
# Action dist class and inputs are generated via custom function.
|
|
if self.action_distribution_fn:
|
|
dist_inputs, dist_class, _ = self.action_distribution_fn(
|
|
policy=self,
|
|
model=self.model,
|
|
obs_batch=input_dict[SampleBatch.CUR_OBS],
|
|
explore=False,
|
|
is_training=False)
|
|
# Default action-dist inputs calculation.
|
|
else:
|
|
dist_class = self.dist_class
|
|
dist_inputs, _ = self.model(input_dict, state_batches,
|
|
seq_lens)
|
|
|
|
action_dist = dist_class(dist_inputs, self.model)
|
|
log_likelihoods = action_dist.logp(input_dict[SampleBatch.ACTIONS])
|
|
return log_likelihoods
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def learn_on_batch(self, postprocessed_batch: SampleBatch) -> Dict[
|
|
str, TensorType]:
|
|
# Get batch ready for RNNs, if applicable.
|
|
pad_batch_to_sequences_of_same_size(
|
|
postprocessed_batch,
|
|
max_seq_len=self.max_seq_len,
|
|
shuffle=False,
|
|
batch_divisibility_req=self.batch_divisibility_req)
|
|
|
|
train_batch = self._lazy_tensor_dict(postprocessed_batch)
|
|
loss_out = force_list(
|
|
self._loss(self, self.model, self.dist_class, train_batch))
|
|
# Call Model's custom-loss with Policy loss outputs and train_batch.
|
|
if self.model:
|
|
loss_out = self.model.custom_loss(loss_out, train_batch)
|
|
assert len(loss_out) == len(self._optimizers)
|
|
# assert not any(torch.isnan(l) for l in loss_out)
|
|
|
|
# Loop through all optimizers.
|
|
grad_info = {"allreduce_latency": 0.0}
|
|
for i, opt in enumerate(self._optimizers):
|
|
# Erase gradients in all vars of this optimizer.
|
|
opt.zero_grad()
|
|
# Recompute gradients of loss over all variables.
|
|
loss_out[i].backward(retain_graph=(i < len(self._optimizers) - 1))
|
|
grad_info.update(self.extra_grad_process(opt, loss_out[i]))
|
|
|
|
if self.distributed_world_size:
|
|
grads = []
|
|
for param_group in opt.param_groups:
|
|
for p in param_group["params"]:
|
|
if p.grad is not None:
|
|
grads.append(p.grad)
|
|
|
|
start = time.time()
|
|
if torch.cuda.is_available():
|
|
# Sadly, allreduce_coalesced does not work with CUDA yet.
|
|
for g in grads:
|
|
torch.distributed.all_reduce(
|
|
g, op=torch.distributed.ReduceOp.SUM)
|
|
else:
|
|
torch.distributed.all_reduce_coalesced(
|
|
grads, op=torch.distributed.ReduceOp.SUM)
|
|
|
|
for param_group in opt.param_groups:
|
|
for p in param_group["params"]:
|
|
if p.grad is not None:
|
|
p.grad /= self.distributed_world_size
|
|
|
|
grad_info["allreduce_latency"] += time.time() - start
|
|
|
|
# Step the optimizer.
|
|
opt.step()
|
|
|
|
grad_info["allreduce_latency"] /= len(self._optimizers)
|
|
grad_info.update(self.extra_grad_info(train_batch))
|
|
return {LEARNER_STATS_KEY: grad_info}
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def compute_gradients(self,
|
|
postprocessed_batch: SampleBatch) -> ModelGradients:
|
|
train_batch = self._lazy_tensor_dict(postprocessed_batch)
|
|
loss_out = force_list(
|
|
self._loss(self, self.model, self.dist_class, train_batch))
|
|
assert len(loss_out) == len(self._optimizers)
|
|
|
|
grad_process_info = {}
|
|
grads = []
|
|
for i, opt in enumerate(self._optimizers):
|
|
opt.zero_grad()
|
|
loss_out[i].backward()
|
|
grad_process_info = self.extra_grad_process(opt, loss_out[i])
|
|
|
|
# Note that return values are just references;
|
|
# calling zero_grad will modify the values
|
|
for param_group in opt.param_groups:
|
|
for p in param_group["params"]:
|
|
if p.grad is not None:
|
|
grads.append(p.grad.data.cpu().numpy())
|
|
else:
|
|
grads.append(None)
|
|
|
|
grad_info = self.extra_grad_info(train_batch)
|
|
grad_info.update(grad_process_info)
|
|
return grads, {LEARNER_STATS_KEY: grad_info}
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def apply_gradients(self, gradients: ModelGradients) -> None:
|
|
# TODO(sven): Not supported for multiple optimizers yet.
|
|
assert len(self._optimizers) == 1
|
|
for g, p in zip(gradients, self.model.parameters()):
|
|
if g is not None:
|
|
p.grad = torch.from_numpy(g).to(self.device)
|
|
|
|
self._optimizers[0].step()
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def get_weights(self) -> ModelWeights:
|
|
return {
|
|
k: v.cpu().detach().numpy()
|
|
for k, v in self.model.state_dict().items()
|
|
}
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def set_weights(self, weights: ModelWeights) -> None:
|
|
weights = convert_to_torch_tensor(weights, device=self.device)
|
|
self.model.load_state_dict(weights)
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def is_recurrent(self) -> bool:
|
|
return len(self.model.get_initial_state()) > 0
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def num_state_tensors(self) -> int:
|
|
return len(self.model.get_initial_state())
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def get_initial_state(self) -> List[TensorType]:
|
|
return [
|
|
s.cpu().detach().numpy() for s in self.model.get_initial_state()
|
|
]
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def get_state(self) -> Union[Dict[str, TensorType], List[TensorType]]:
|
|
state = super().get_state()
|
|
state["_optimizer_variables"] = []
|
|
for i, o in enumerate(self._optimizers):
|
|
state["_optimizer_variables"].append(o.state_dict())
|
|
return state
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def set_state(self, state: object) -> None:
|
|
state = state.copy() # shallow copy
|
|
# Set optimizer vars first.
|
|
optimizer_vars = state.pop("_optimizer_variables", None)
|
|
if optimizer_vars:
|
|
assert len(optimizer_vars) == len(self._optimizers)
|
|
for o, s in zip(self._optimizers, optimizer_vars):
|
|
o.load_state_dict(s)
|
|
# Then the Policy's (NN) weights.
|
|
super().set_state(state)
|
|
|
|
@DeveloperAPI
|
|
def extra_grad_process(
|
|
self,
|
|
optimizer: "torch.optim.Optimizer",
|
|
loss: TensorType):
|
|
"""Called after each optimizer.zero_grad() + loss.backward() call.
|
|
|
|
Called for each self._optimizers/loss-value pair.
|
|
Allows for gradient processing before optimizer.step() is called.
|
|
E.g. for gradient clipping.
|
|
|
|
Args:
|
|
optimizer (torch.optim.Optimizer): A torch optimizer object.
|
|
loss (TensorType): The loss tensor associated with the optimizer.
|
|
|
|
Returns:
|
|
Dict[str, TensorType]: An dict with information on the gradient
|
|
processing step.
|
|
"""
|
|
return {}
|
|
|
|
@DeveloperAPI
|
|
def extra_action_out(
|
|
self,
|
|
input_dict: Dict[str, TensorType],
|
|
state_batches: List[TensorType],
|
|
model: TorchModelV2,
|
|
action_dist: TorchDistributionWrapper) -> Dict[str, TensorType]:
|
|
"""Returns dict of extra info to include in experience batch.
|
|
|
|
Args:
|
|
input_dict (Dict[str, TensorType]): Dict of model input tensors.
|
|
state_batches (List[TensorType]): List of state tensors.
|
|
model (TorchModelV2): Reference to the model object.
|
|
action_dist (TorchDistributionWrapper): Torch action dist object
|
|
to get log-probs (e.g. for already sampled actions).
|
|
|
|
Returns:
|
|
Dict[str, TensorType]: Extra outputs to return in a
|
|
compute_actions() call (3rd return value).
|
|
"""
|
|
return {}
|
|
|
|
@DeveloperAPI
|
|
def extra_grad_info(self, train_batch: SampleBatch) -> Dict[
|
|
str, TensorType]:
|
|
"""Return dict of extra grad info.
|
|
|
|
Args:
|
|
train_batch (SampleBatch): The training batch for which to produce
|
|
extra grad info for.
|
|
|
|
Returns:
|
|
Dict[str, TensorType]: The info dict carrying grad info per str
|
|
key.
|
|
"""
|
|
return {}
|
|
|
|
@DeveloperAPI
|
|
def optimizer(self) -> Union[
|
|
List["torch.optim.Optimizer"], "torch.optim.Optimizer"]:
|
|
"""Custom the local PyTorch optimizer(s) to use.
|
|
|
|
Returns:
|
|
Union[List[torch.optim.Optimizer], torch.optim.Optimizer]:
|
|
The local PyTorch optimizer(s) to use for this Policy.
|
|
"""
|
|
if hasattr(self, "config"):
|
|
return torch.optim.Adam(
|
|
self.model.parameters(), lr=self.config["lr"])
|
|
else:
|
|
return torch.optim.Adam(self.model.parameters())
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def export_model(self, export_dir: str) -> None:
|
|
"""TODO(sven): implement for torch.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def export_checkpoint(self, export_dir: str) -> None:
|
|
"""TODO(sven): implement for torch.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@override(Policy)
|
|
@DeveloperAPI
|
|
def import_model_from_h5(self, import_file: str) -> None:
|
|
"""Imports weights into torch model."""
|
|
return self.model.import_from_h5(import_file)
|
|
|
|
def _lazy_tensor_dict(self, postprocessed_batch):
|
|
train_batch = UsageTrackingDict(postprocessed_batch)
|
|
train_batch.set_get_interceptor(functools.partial(
|
|
convert_to_torch_tensor, device=self.device))
|
|
return train_batch
|
|
|
|
|
|
# TODO: (sven) Unify hyperparam annealing procedures across RLlib (tf/torch)
|
|
# and for all possible hyperparams, not just lr.
|
|
@DeveloperAPI
|
|
class LearningRateSchedule:
|
|
"""Mixin for TFPolicy that adds a learning rate schedule."""
|
|
|
|
@DeveloperAPI
|
|
def __init__(self, lr, lr_schedule):
|
|
self.cur_lr = lr
|
|
if lr_schedule is None:
|
|
self.lr_schedule = ConstantSchedule(lr, framework=None)
|
|
else:
|
|
self.lr_schedule = PiecewiseSchedule(
|
|
lr_schedule, outside_value=lr_schedule[-1][-1], framework=None)
|
|
|
|
@override(Policy)
|
|
def on_global_var_update(self, global_vars):
|
|
super(LearningRateSchedule, self).on_global_var_update(global_vars)
|
|
self.cur_lr = self.lr_schedule.value(global_vars["timestep"])
|
|
|
|
@override(TorchPolicy)
|
|
def optimizer(self):
|
|
for opt in self._optimizers:
|
|
for p in opt.param_groups:
|
|
p["lr"] = self.cur_lr
|
|
return self._optimizers
|
|
|
|
|
|
@DeveloperAPI
|
|
class EntropyCoeffSchedule:
|
|
"""Mixin for TorchPolicy that adds entropy coeff decay."""
|
|
|
|
@DeveloperAPI
|
|
def __init__(self, entropy_coeff, entropy_coeff_schedule):
|
|
self.entropy_coeff = entropy_coeff
|
|
|
|
if entropy_coeff_schedule is None:
|
|
self.entropy_coeff_schedule = ConstantSchedule(
|
|
entropy_coeff, framework=None)
|
|
else:
|
|
# Allows for custom schedule similar to lr_schedule format
|
|
if isinstance(entropy_coeff_schedule, list):
|
|
self.entropy_coeff_schedule = PiecewiseSchedule(
|
|
entropy_coeff_schedule,
|
|
outside_value=entropy_coeff_schedule[-1][-1],
|
|
framework=None)
|
|
else:
|
|
# Implements previous version but enforces outside_value
|
|
self.entropy_coeff_schedule = PiecewiseSchedule(
|
|
[[0, entropy_coeff], [entropy_coeff_schedule, 0.0]],
|
|
outside_value=0.0,
|
|
framework=None)
|
|
|
|
@override(Policy)
|
|
def on_global_var_update(self, global_vars):
|
|
super(EntropyCoeffSchedule, self).on_global_var_update(global_vars)
|
|
self.entropy_coeff = self.entropy_coeff_schedule.value(
|
|
global_vars["timestep"])
|