ray/doc/examples/lm/lm-cluster.yaml

130 lines
5 KiB
YAML

# An unique identifier for the head node and workers of this cluster.
cluster_name: lm-cluster
# The minimum number of workers nodes to launch in addition to the head
# node. This number should be >= 0.
min_workers: 1
# The maximum number of workers nodes to launch in addition to the head
# node. This takes precedence over min_workers.
max_workers: 2
# The initial number of worker nodes to launch in addition to the head
# node. When the cluster is first brought up (or when it is refreshed with a
# subsequent `ray up`) this number of nodes will be started.
initial_workers: 1
# Whether or not to autoscale aggressively. If this is enabled, if at any point
# we would start more workers, we start at least enough to bring us to
# initial_workers.
autoscaling_mode: default
# The autoscaler will scale up the cluster to this target fraction of resource
# usage. For example, if a cluster of 10 nodes is 100% busy and
# target_utilization is 0.8, it would resize the cluster to 13. This fraction
# can be decreased to increase the aggressiveness of upscaling.
# This value must be less than 1.0 for scaling to happen.
target_utilization_fraction: 0.48
# If a node is idle for this many minutes, it will be removed.
idle_timeout_minutes: 5
# Cloud-provider specific configuration.
provider:
type: aws
region: us-west-2
# Availability zone(s), comma-separated, that nodes may be launched in.
# Nodes are currently spread between zones by a round-robin approach,
# however this implementation detail should not be relied upon.
availability_zone: us-west-2a,us-west-2b
# How Ray will authenticate with newly launched nodes.
auth:
ssh_user: ubuntu
# By default Ray creates a new private keypair, but you can also use your own.
# If you do so, make sure to also set "KeyName" in the head and worker node
# configurations below.
# ssh_private_key: /path/to/your/key.pem
# Provider-specific config for the head node, e.g. instance type. By default
# Ray will auto-configure unspecified fields such as SubnetId and KeyName.
# For more documentation on available fields, see:
# http://boto3.readthedocs.io/en/latest/reference/services/ec2.html#EC2.ServiceResource.create_instances
head_node:
InstanceType: m5.xlarge
ImageId: ami-0b294f219d14e6a82 # Deep Learning AMI (Ubuntu) Version 21.0
SecurityGroupIds:
- "{{SecurityGroupId}}"
# You can provision additional disk space with a conf as follows
BlockDeviceMappings:
- DeviceName: /dev/sda1
Ebs:
VolumeSize: 100
# Additional options in the boto docs.
# Provider-specific config for worker nodes, e.g. instance type. By default
# Ray will auto-configure unspecified fields such as SubnetId and KeyName.
# For more documentation on available fields, see:
# http://boto3.readthedocs.io/en/latest/reference/services/ec2.html#EC2.ServiceResource.create_instances
worker_nodes:
InstanceType: p3.2xlarge
ImageId: ami-0b294f219d14e6a82 # Deep Learning AMI (Ubuntu) Version 21.0
SecurityGroupIds:
- "{{SecurityGroupId}}"
# Run workers on spot by default. Comment this out to use on-demand.
InstanceMarketOptions:
MarketType: spot
# Additional options can be found in the boto docs, e.g.
# SpotOptions:
# MaxPrice: MAX_HOURLY_PRICE
# Additional options in the boto docs.
# List of shell commands to run to set up nodes.
setup_commands:
# Note: if you're developing Ray, you probably want to create an AMI that
# has your Ray repo pre-cloned. Then, you can replace the pip installs
# below with a git checkout <your_sha> (and possibly a recompile).
- echo 'export PATH="$HOME/anaconda3/envs/pytorch_p36/bin:$PATH"' >> ~/.bashrc;
source ~/.bashrc;
pip install -U ray;
pip install -U fairseq==0.8.0;
- sudo kill -9 `sudo lsof /var/lib/dpkg/lock-frontend | awk '{print $2}' | tail -n 1`;
sudo pkill -9 apt-get;
sudo pkill -9 dpkg;
sudo dpkg --configure -a;
sudo apt-get -y install binutils;
cd $HOME;
git clone https://github.com/aws/efs-utils;
cd $HOME/efs-utils;
./build-deb.sh;
sudo apt-get -y install ./build/amazon-efs-utils*deb;
cd $HOME;
mkdir efs;
sudo mount -t efs {{FileSystemId}}:/ efs;
sudo chmod 777 efs;
# Custom commands that will be run on the head node after common setup.
head_setup_commands:
- pip install boto3==1.4.8 # 1.4.8 adds InstanceMarketOptions
# Custom commands that will be run on worker nodes after common setup.
worker_setup_commands: []
# Command to start ray on the head node. You don't need to change this.
head_start_ray_commands:
- ray stop
- ulimit -n 65536;
ray start --head --redis-port=6379
--object-manager-port=8076
--autoscaling-config=~/ray_bootstrap_config.yaml
# Command to start ray on worker nodes. You don't need to change this.
worker_start_ray_commands:
- ray stop
- ulimit -n 65536;
ray start
--address=$RAY_HEAD_IP:6379
--object-manager-port=8076