mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
72 lines
1.6 KiB
Python
72 lines
1.6 KiB
Python
import numpy as np
|
|
|
|
import ray
|
|
import ray.autoscaler.sdk
|
|
|
|
import json
|
|
import os
|
|
from time import sleep, perf_counter
|
|
from tqdm import tqdm
|
|
|
|
NUM_NODES = 50
|
|
OBJECT_SIZE = 2**30
|
|
|
|
|
|
def num_alive_nodes():
|
|
n = 0
|
|
for node in ray.nodes():
|
|
if node["Alive"]:
|
|
n += 1
|
|
return n
|
|
|
|
|
|
def scale_to(target):
|
|
while num_alive_nodes() != target:
|
|
ray.autoscaler.sdk.request_resources(bundles=[{"node": 1}] * target)
|
|
print(f"Current # nodes: {num_alive_nodes()}, target: {target}")
|
|
print("Waiting ...")
|
|
sleep(5)
|
|
|
|
|
|
def test_object_broadcast():
|
|
scale_to(NUM_NODES)
|
|
|
|
@ray.remote(num_cpus=1, resources={"node": 1})
|
|
class Actor:
|
|
def foo(self):
|
|
pass
|
|
|
|
def sum(self, arr):
|
|
return np.sum(arr)
|
|
|
|
actors = [Actor.remote() for _ in range(NUM_NODES)]
|
|
|
|
arr = np.ones(OBJECT_SIZE, dtype=np.uint8)
|
|
ref = ray.put(arr)
|
|
|
|
for actor in tqdm(actors, desc="Ensure all actors have started."):
|
|
ray.get(actor.foo.remote())
|
|
|
|
result_refs = []
|
|
for actor in tqdm(actors, desc="Broadcasting objects"):
|
|
result_refs.append(actor.sum.remote(ref))
|
|
|
|
results = ray.get(result_refs)
|
|
for result in results:
|
|
assert result == OBJECT_SIZE
|
|
|
|
|
|
ray.init(address="auto")
|
|
start = perf_counter()
|
|
test_object_broadcast()
|
|
end = perf_counter()
|
|
print(f"Broadcast time: {end - start} ({OBJECT_SIZE} B x {NUM_NODES} nodes)")
|
|
|
|
if "TEST_OUTPUT_JSON" in os.environ:
|
|
out_file = open(os.environ["TEST_OUTPUT_JSON"], "w")
|
|
results = {
|
|
"object_size": OBJECT_SIZE,
|
|
"num_nodes": NUM_NODES,
|
|
"success": "1"
|
|
}
|
|
json.dump(results, out_file)
|