ray/rllib/tuned_examples/compact-regression-test.yaml

145 lines
3.8 KiB
YAML

# This file runs on a single g3.16xl or p3.16xl node. It is suggested
# to run these in a DLAMI / tensorflow_p36 env. Note that RL runs are
# inherently high variance, so you'll have to check to see if the
# rewards reached seem reasonably in line with previous results.
#
# You can find the reference results here:
# https://github.com/ray-project/ray/tree/master/release/release_logs
atari-impala:
env: BreakoutNoFrameskip-v4
run: IMPALA
num_samples: 4
stop:
time_total_s: 3600
config:
rollout_fragment_length: 50
train_batch_size: 500
num_workers: 10
num_envs_per_worker: 5
clip_rewards: True
lr_schedule: [
[0, 0.0005],
[20000000, 0.000000000001],
]
num_gpus: 1
atari-ppo-tf:
env: BreakoutNoFrameskip-v4
run: PPO
num_samples: 4
stop:
time_total_s: 3600
config:
lambda: 0.95
kl_coeff: 0.5
clip_rewards: True
clip_param: 0.1
vf_clip_param: 10.0
entropy_coeff: 0.01
train_batch_size: 5000
rollout_fragment_length: 100
sgd_minibatch_size: 500
num_sgd_iter: 10
num_workers: 10
num_envs_per_worker: 5
batch_mode: truncate_episodes
observation_filter: NoFilter
model:
vf_share_layers: true
num_gpus: 1
atari-ppo-torch:
env: BreakoutNoFrameskip-v4
run: PPO
num_samples: 4
stop:
time_total_s: 3600
config:
framework: torch
lambda: 0.95
kl_coeff: 0.5
clip_rewards: True
clip_param: 0.1
vf_clip_param: 10.0
entropy_coeff: 0.01
train_batch_size: 5000
rollout_fragment_length: 100
sgd_minibatch_size: 500
num_sgd_iter: 10
num_workers: 10
num_envs_per_worker: 5
batch_mode: truncate_episodes
observation_filter: NoFilter
model:
vf_share_layers: true
num_gpus: 1
apex:
env: BreakoutNoFrameskip-v4
run: APEX
num_samples: 4
stop:
time_total_s: 3600
config:
double_q: false
dueling: false
num_atoms: 1
noisy: false
n_step: 3
lr: .0001
adam_epsilon: .00015
hiddens: [512]
exploration_config:
epsilon_timesteps: 200000
final_epsilon: 0.01
replay_buffer_config:
type: MultiAgentPrioritizedReplayBuffer
prioritized_replay_alpha: 0.5
capacity: 1000000
num_gpus: 1
num_workers: 8
num_envs_per_worker: 8
rollout_fragment_length: 20
train_batch_size: 512
target_network_update_freq: 50000
min_sample_timesteps_per_iteration: 25000
atari-a2c:
env: BreakoutNoFrameskip-v4
run: A2C
num_samples: 4
stop:
time_total_s: 3600
config:
rollout_fragment_length: 20
clip_rewards: True
num_workers: 5
num_envs_per_worker: 5
num_gpus: 1
lr_schedule: [
[0, 0.0007],
[20000000, 0.000000000001],
]
atari-basic-dqn:
env: BreakoutNoFrameskip-v4
run: DQN
num_samples: 4
stop:
time_total_s: 3600
config:
double_q: false
dueling: false
num_atoms: 1
noisy: false
replay_buffer_config:
type: MultiAgentReplayBuffer
learning_starts: 20000
capacity: 1000000
n_step: 1
target_network_update_freq: 8000
lr: .0000625
adam_epsilon: .00015
hiddens: [512]
rollout_fragment_length: 4
train_batch_size: 32
exploration_config:
epsilon_timesteps: 200000
final_epsilon: 0.01
num_gpus: 0.2
min_sample_timesteps_per_iteration: 10000