mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
91 lines
3 KiB
Python
91 lines
3 KiB
Python
"""Example of specifying an autoregressive action distribution.
|
|
|
|
In an action space with multiple components (e.g., Tuple(a1, a2)), you might
|
|
want a2 to be sampled based on the sampled value of a1, i.e.,
|
|
a2_sampled ~ P(a2 | a1_sampled, obs). Normally, a1 and a2 would be sampled
|
|
independently.
|
|
|
|
To do this, you need both a custom model that implements the autoregressive
|
|
pattern, and a custom action distribution class that leverages that model.
|
|
This examples shows both.
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.examples.env.correlated_actions_env import CorrelatedActionsEnv
|
|
from ray.rllib.examples.models.autoregressive_action_model import \
|
|
AutoregressiveActionModel, TorchAutoregressiveActionModel
|
|
from ray.rllib.examples.models.autoregressive_action_dist import \
|
|
BinaryAutoregressiveDistribution, TorchBinaryAutoregressiveDistribution
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run",
|
|
type=str,
|
|
default="PPO",
|
|
help="The RLlib-registered algorithm to use.")
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.")
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.")
|
|
parser.add_argument(
|
|
"--stop-iters",
|
|
type=int,
|
|
default=200,
|
|
help="Number of iterations to train.")
|
|
parser.add_argument(
|
|
"--stop-timesteps",
|
|
type=int,
|
|
default=100000,
|
|
help="Number of timesteps to train.")
|
|
parser.add_argument(
|
|
"--stop-reward",
|
|
type=float,
|
|
default=200.0,
|
|
help="Reward at which we stop training.")
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
ModelCatalog.register_custom_model(
|
|
"autoregressive_model", TorchAutoregressiveActionModel
|
|
if args.framework == "torch" else AutoregressiveActionModel)
|
|
ModelCatalog.register_custom_action_dist(
|
|
"binary_autoreg_dist", TorchBinaryAutoregressiveDistribution
|
|
if args.framework == "torch" else BinaryAutoregressiveDistribution)
|
|
|
|
config = {
|
|
"env": CorrelatedActionsEnv,
|
|
"gamma": 0.5,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"model": {
|
|
"custom_model": "autoregressive_model",
|
|
"custom_action_dist": "binary_autoreg_dist",
|
|
},
|
|
"framework": args.framework,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
results = tune.run(args.run, stop=stop, config=config, verbose=1)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|