ray/rllib/utils/exploration/random.py
Sven Mika e153e3179f
[RLlib] Exploration API: Policy changes needed for forward pass noisifications. (#7798)
* Rollback.

* WIP.

* WIP.

* LINT.

* WIP.

* Fix.

* Fix.

* Fix.

* LINT.

* Fix (SAC does currently not support eager).

* Fix.

* WIP.

* LINT.

* Update rllib/evaluation/sampler.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/evaluation/sampler.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/utils/exploration/exploration.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/utils/exploration/exploration.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* WIP.

* Fix.

* LINT.

* LINT.

* Fix and LINT.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Fix.

* Fix and LINT.

* Update rllib/utils/exploration/exploration.py

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Fixes.

* LINT.

* WIP.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-04-01 00:43:21 -07:00

94 lines
3.7 KiB
Python

from gym.spaces import Discrete, MultiDiscrete, Tuple
from typing import Union
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.utils.annotations import override
from ray.rllib.utils.exploration.exploration import Exploration
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
TensorType
from ray.rllib.utils.tuple_actions import TupleActions
tf = try_import_tf()
torch, _ = try_import_torch()
class Random(Exploration):
"""A random action selector (deterministic/greedy for explore=False).
If explore=True, returns actions randomly from `self.action_space` (via
Space.sample()).
If explore=False, returns the greedy/max-likelihood action.
"""
def __init__(self, action_space, *, model, framework, **kwargs):
"""Initialize a Random Exploration object.
Args:
action_space (Space): The gym action space used by the environment.
framework (Optional[str]): One of None, "tf", "torch".
"""
super().__init__(
action_space=action_space,
framework=framework,
model=model,
**kwargs)
# Determine py_func types, depending on our action-space.
if isinstance(self.action_space, (Discrete, MultiDiscrete)) or \
(isinstance(self.action_space, Tuple) and
isinstance(self.action_space[0], (Discrete, MultiDiscrete))):
self.dtype_sample, self.dtype = (tf.int64, tf.int32)
else:
self.dtype_sample, self.dtype = (tf.float64, tf.float32)
@override(Exploration)
def get_exploration_action(self,
*,
action_distribution: ActionDistribution,
timestep: Union[int, TensorType],
explore: bool = True):
# Instantiate the distribution object.
if self.framework == "tf":
return self.get_tf_exploration_action_op(action_distribution,
explore)
else:
return self.get_torch_exploration_action(action_distribution,
explore)
def get_tf_exploration_action_op(self, action_dist, explore):
def true_fn():
action = tf.py_function(self.action_space.sample, [],
self.dtype_sample)
# Will be unnecessary, once we support batch/time-aware Spaces.
return tf.expand_dims(tf.cast(action, dtype=self.dtype), 0)
def false_fn():
return tf.cast(
action_dist.deterministic_sample(), dtype=self.dtype)
action = tf.cond(
pred=tf.constant(explore, dtype=tf.bool)
if isinstance(explore, bool) else explore,
true_fn=true_fn,
false_fn=false_fn)
# TODO(sven): Move into (deterministic_)sample(logp=True|False)
if isinstance(action, TupleActions):
batch_size = tf.shape(action[0][0])[0]
else:
batch_size = tf.shape(action)[0]
logp = tf.zeros(shape=(batch_size, ), dtype=tf.float32)
return action, logp
def get_torch_exploration_action(self, action_dist, explore):
tensor_fn = torch.LongTensor if \
type(self.action_space) in [Discrete, MultiDiscrete] else \
torch.FloatTensor
if explore:
# Unsqueeze will be unnecessary, once we support batch/time-aware
# Spaces.
action = tensor_fn(self.action_space.sample()).unsqueeze(0)
else:
action = tensor_fn(action_dist.deterministic_sample())
logp = torch.zeros((action.size()[0], ), dtype=torch.float32)
return action, logp