ray/rllib/policy/tests/test_compute_log_likelihoods.py
Avnish Narayan 026bf01071
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535)
* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7

* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

* Reformatting

* Fixing tests

* Move atari-py install conditional to req.txt

* migrate to new ale install method

* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7
* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

Move atari-py install conditional to req.txt

migrate to new ale install method

Make parametric_actions_cartpole return float32 actions/obs

Adding type conversions if obs/actions don't match space

Add utils to make elements match gym space dtypes

Co-authored-by: Jun Gong <jungong@anyscale.com>
Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 16:24:00 +01:00

211 lines
8.1 KiB
Python

import numpy as np
from scipy.stats import norm
import unittest
import ray
import ray.rllib.agents.dqn as dqn
import ray.rllib.agents.pg as pg
import ray.rllib.agents.ppo as ppo
import ray.rllib.agents.sac as sac
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check, framework_iterator
from ray.rllib.utils.numpy import one_hot, fc, MIN_LOG_NN_OUTPUT, \
MAX_LOG_NN_OUTPUT
tf1, tf, tfv = try_import_tf()
def do_test_log_likelihood(run,
config,
prev_a=None,
continuous=False,
layer_key=("fc", (0, 4), ("_hidden_layers.0.",
"_logits.")),
logp_func=None):
config = config.copy()
# Run locally.
config["num_workers"] = 0
# Env setup.
if continuous:
env = "Pendulum-v1"
obs_batch = preprocessed_obs_batch = np.array([[0.0, 0.1, -0.1]])
else:
env = "FrozenLake-v1"
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
obs_batch = np.array([0])
preprocessed_obs_batch = one_hot(obs_batch, depth=16)
prev_r = None if prev_a is None else np.array(0.0)
# Test against all frameworks.
for fw in framework_iterator(config):
trainer = run(config=config, env=env)
policy = trainer.get_policy()
vars = policy.get_weights()
# Sample n actions, then roughly check their logp against their
# counts.
num_actions = 1000 if not continuous else 50
actions = []
for _ in range(num_actions):
# Single action from single obs.
actions.append(
trainer.compute_single_action(
obs_batch[0],
prev_action=prev_a,
prev_reward=prev_r,
explore=True,
# Do not unsquash actions
# (remain in normalized [-1.0; 1.0] space).
unsquash_action=False,
))
# Test all taken actions for their log-likelihoods vs expected values.
if continuous:
for idx in range(num_actions):
a = actions[idx]
if fw != "torch":
if isinstance(vars, list):
expected_mean_logstd = fc(
fc(obs_batch, vars[layer_key[1][0]]),
vars[layer_key[1][1]])
else:
expected_mean_logstd = fc(
fc(
obs_batch,
vars["default_policy/{}_1/kernel".format(
layer_key[0])]),
vars["default_policy/{}_out/kernel".format(
layer_key[0])])
else:
expected_mean_logstd = fc(
fc(obs_batch,
vars["{}_model.0.weight".format(layer_key[2][0])],
framework=fw),
vars["{}_model.0.weight".format(layer_key[2][1])],
framework=fw)
mean, log_std = np.split(expected_mean_logstd, 2, axis=-1)
if logp_func is None:
expected_logp = np.log(norm.pdf(a, mean, np.exp(log_std)))
else:
expected_logp = logp_func(mean, log_std, a)
logp = policy.compute_log_likelihoods(
np.array([a]),
preprocessed_obs_batch,
prev_action_batch=np.array([prev_a]) if prev_a else None,
prev_reward_batch=np.array([prev_r]) if prev_r else None,
actions_normalized=True,
)
check(logp, expected_logp[0], rtol=0.2)
# Test all available actions for their logp values.
else:
for a in [0, 1, 2, 3]:
count = actions.count(a)
expected_prob = count / num_actions
logp = policy.compute_log_likelihoods(
np.array([a]),
preprocessed_obs_batch,
prev_action_batch=np.array([prev_a]) if prev_a else None,
prev_reward_batch=np.array([prev_r]) if prev_r else None)
check(np.exp(logp), expected_prob, atol=0.2)
class TestComputeLogLikelihood(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_dqn(self):
"""Tests, whether DQN correctly computes logp in soft-q mode."""
config = dqn.DEFAULT_CONFIG.copy()
# Soft-Q for DQN.
config["exploration_config"] = {"type": "SoftQ", "temperature": 0.5}
config["seed"] = 42
do_test_log_likelihood(dqn.DQNTrainer, config)
def test_pg_cont(self):
"""Tests PG's (cont. actions) compute_log_likelihoods method."""
config = pg.DEFAULT_CONFIG.copy()
config["seed"] = 42
config["model"]["fcnet_hiddens"] = [10]
config["model"]["fcnet_activation"] = "linear"
prev_a = np.array([0.0])
do_test_log_likelihood(
pg.PGTrainer,
config,
prev_a,
continuous=True,
layer_key=("fc", (0, 2), ("_hidden_layers.0.", "_logits.")))
def test_pg_discr(self):
"""Tests PG's (cont. actions) compute_log_likelihoods method."""
config = pg.DEFAULT_CONFIG.copy()
config["seed"] = 42
prev_a = np.array(0)
do_test_log_likelihood(pg.PGTrainer, config, prev_a)
def test_ppo_cont(self):
"""Tests PPO's (cont. actions) compute_log_likelihoods method."""
config = ppo.DEFAULT_CONFIG.copy()
config["seed"] = 42
config["model"]["fcnet_hiddens"] = [10]
config["model"]["fcnet_activation"] = "linear"
prev_a = np.array([0.0])
do_test_log_likelihood(ppo.PPOTrainer, config, prev_a, continuous=True)
def test_ppo_discr(self):
"""Tests PPO's (discr. actions) compute_log_likelihoods method."""
config = ppo.DEFAULT_CONFIG.copy()
config["seed"] = 42
prev_a = np.array(0)
do_test_log_likelihood(ppo.PPOTrainer, config, prev_a)
def test_sac_cont(self):
"""Tests SAC's (cont. actions) compute_log_likelihoods method."""
config = sac.DEFAULT_CONFIG.copy()
config["seed"] = 42
config["policy_model"]["fcnet_hiddens"] = [10]
config["policy_model"]["fcnet_activation"] = "linear"
prev_a = np.array([0.0])
# SAC cont uses a squashed normal distribution. Implement it's logp
# logic here in numpy for comparing results.
def logp_func(means, log_stds, values, low=-1.0, high=1.0):
stds = np.exp(
np.clip(log_stds, MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT))
unsquashed_values = np.arctanh((values - low) /
(high - low) * 2.0 - 1.0)
log_prob_unsquashed = \
np.sum(np.log(norm.pdf(unsquashed_values, means, stds)), -1)
return log_prob_unsquashed - \
np.sum(np.log(1 - np.tanh(unsquashed_values) ** 2),
axis=-1)
do_test_log_likelihood(
sac.SACTrainer,
config,
prev_a,
continuous=True,
layer_key=("fc", (0, 2), ("action_model._hidden_layers.0.",
"action_model._logits.")),
logp_func=logp_func)
def test_sac_discr(self):
"""Tests SAC's (discrete actions) compute_log_likelihoods method."""
config = sac.DEFAULT_CONFIG.copy()
config["seed"] = 42
config["policy_model"]["fcnet_hiddens"] = [10]
config["policy_model"]["fcnet_activation"] = "linear"
prev_a = np.array(0)
do_test_log_likelihood(sac.SACTrainer, config, prev_a)
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))