mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
180 lines
6.6 KiB
Python
180 lines
6.6 KiB
Python
from collections import Counter
|
|
import numpy as np
|
|
import unittest
|
|
|
|
from ray.rllib.execution.replay_buffer import PrioritizedReplayBuffer
|
|
from ray.rllib.utils.test_utils import check
|
|
|
|
|
|
class TestPrioritizedReplayBuffer(unittest.TestCase):
|
|
"""
|
|
Tests insertion and (weighted) sampling of the PrioritizedReplayBuffer.
|
|
"""
|
|
|
|
capacity = 10
|
|
alpha = 1.0
|
|
beta = 1.0
|
|
max_priority = 1.0
|
|
|
|
def _generate_data(self):
|
|
return (
|
|
np.random.random((4, )), # obs_t
|
|
np.random.choice([0, 1]), # action
|
|
np.random.rand(), # reward
|
|
np.random.random((4, )), # obs_tp1
|
|
np.random.choice([False, True]), # done
|
|
)
|
|
|
|
def test_add(self):
|
|
memory = PrioritizedReplayBuffer(
|
|
size=2,
|
|
alpha=self.alpha,
|
|
)
|
|
|
|
# Assert indices 0 before insert.
|
|
self.assertEqual(len(memory), 0)
|
|
self.assertEqual(memory._next_idx, 0)
|
|
|
|
# Insert single record.
|
|
data = self._generate_data()
|
|
memory.add(*data, weight=0.5)
|
|
self.assertTrue(len(memory) == 1)
|
|
self.assertTrue(memory._next_idx == 1)
|
|
|
|
# Insert single record.
|
|
data = self._generate_data()
|
|
memory.add(*data, weight=0.1)
|
|
self.assertTrue(len(memory) == 2)
|
|
self.assertTrue(memory._next_idx == 0)
|
|
|
|
# Insert over capacity.
|
|
data = self._generate_data()
|
|
memory.add(*data, weight=1.0)
|
|
self.assertTrue(len(memory) == 2)
|
|
self.assertTrue(memory._next_idx == 1)
|
|
|
|
def test_update_priorities(self):
|
|
memory = PrioritizedReplayBuffer(size=self.capacity, alpha=self.alpha)
|
|
|
|
# Insert n samples.
|
|
num_records = 5
|
|
for i in range(num_records):
|
|
data = self._generate_data()
|
|
memory.add(*data, weight=1.0)
|
|
self.assertTrue(len(memory) == i + 1)
|
|
self.assertTrue(memory._next_idx == i + 1)
|
|
|
|
# Fetch records, their indices and weights.
|
|
_, _, _, _, _, weights, indices = \
|
|
memory.sample(3, beta=self.beta)
|
|
check(weights, np.ones(shape=(3, )))
|
|
self.assertEqual(3, len(indices))
|
|
self.assertTrue(len(memory) == num_records)
|
|
self.assertTrue(memory._next_idx == num_records)
|
|
|
|
# Update weight of indices 0, 2, 3, 4 to very small.
|
|
memory.update_priorities(
|
|
np.array([0, 2, 3, 4]), np.array([0.01, 0.01, 0.01, 0.01]))
|
|
# Expect to sample almost only index 1
|
|
# (which still has a weight of 1.0).
|
|
for _ in range(10):
|
|
_, _, _, _, _, weights, indices = memory.sample(
|
|
1000, beta=self.beta)
|
|
self.assertTrue(970 < np.sum(indices) < 1100)
|
|
|
|
# Update weight of indices 0 and 1 to >> 0.01.
|
|
# Expect to sample 0 and 1 equally (and some 2s, 3s, and 4s).
|
|
for _ in range(10):
|
|
rand = np.random.random() + 0.2
|
|
memory.update_priorities(np.array([0, 1]), np.array([rand, rand]))
|
|
_, _, _, _, _, _, indices = memory.sample(1000, beta=self.beta)
|
|
# Expect biased to higher values due to some 2s, 3s, and 4s.
|
|
# print(np.sum(indices))
|
|
self.assertTrue(400 < np.sum(indices) < 800)
|
|
|
|
# Update weights to be 1:2.
|
|
# Expect to sample double as often index 1 over index 0
|
|
# plus very few times indices 2, 3, or 4.
|
|
for _ in range(10):
|
|
rand = np.random.random() + 0.2
|
|
memory.update_priorities(
|
|
np.array([0, 1]), np.array([rand, rand * 2]))
|
|
_, _, _, _, _, _, indices = memory.sample(1000, beta=self.beta)
|
|
# print(np.sum(indices))
|
|
self.assertTrue(600 < np.sum(indices) < 850)
|
|
|
|
# Update weights to be 1:4.
|
|
# Expect to sample quadruple as often index 1 over index 0
|
|
# plus very few times indices 2, 3, or 4.
|
|
for _ in range(10):
|
|
rand = np.random.random() + 0.2
|
|
memory.update_priorities(
|
|
np.array([0, 1]), np.array([rand, rand * 4]))
|
|
_, _, _, _, _, _, indices = memory.sample(1000, beta=self.beta)
|
|
# print(np.sum(indices))
|
|
self.assertTrue(750 < np.sum(indices) < 950)
|
|
|
|
# Update weights to be 1:9.
|
|
# Expect to sample 9 times as often index 1 over index 0.
|
|
# plus very few times indices 2, 3, or 4.
|
|
for _ in range(10):
|
|
rand = np.random.random() + 0.2
|
|
memory.update_priorities(
|
|
np.array([0, 1]), np.array([rand, rand * 9]))
|
|
_, _, _, _, _, _, indices = memory.sample(1000, beta=self.beta)
|
|
# print(np.sum(indices))
|
|
self.assertTrue(850 < np.sum(indices) < 1100)
|
|
|
|
# Insert n more samples.
|
|
num_records = 5
|
|
for i in range(num_records):
|
|
data = self._generate_data()
|
|
memory.add(*data, weight=1.0)
|
|
self.assertTrue(len(memory) == i + 6)
|
|
self.assertTrue(memory._next_idx == (i + 6) % self.capacity)
|
|
|
|
# Update all weights to be 1.0 to 10.0 and sample a >100 batch.
|
|
memory.update_priorities(
|
|
np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
|
|
np.array([0.001, 0.1, 2., 8., 16., 32., 64., 128., 256., 512.]))
|
|
counts = Counter()
|
|
for _ in range(10):
|
|
_, _, _, _, _, _, indices = memory.sample(
|
|
np.random.randint(100, 600), beta=self.beta)
|
|
for i in indices:
|
|
counts[i] += 1
|
|
print(counts)
|
|
# Expect an approximately correct distribution of indices.
|
|
self.assertTrue(
|
|
counts[9] >= counts[8] >= counts[7] >= counts[6] >= counts[5] >=
|
|
counts[4] >= counts[3] >= counts[2] >= counts[1] >= counts[0])
|
|
|
|
def test_alpha_parameter(self):
|
|
# Test sampling from a PR with a very small alpha (should behave just
|
|
# like a regular ReplayBuffer).
|
|
memory = PrioritizedReplayBuffer(size=self.capacity, alpha=0.01)
|
|
|
|
# Insert n samples.
|
|
num_records = 5
|
|
for i in range(num_records):
|
|
data = self._generate_data()
|
|
memory.add(*data, weight=np.random.rand())
|
|
self.assertTrue(len(memory) == i + 1)
|
|
self.assertTrue(memory._next_idx == i + 1)
|
|
|
|
# Fetch records, their indices and weights.
|
|
_, _, _, _, _, weights, indices = \
|
|
memory.sample(1000, beta=self.beta)
|
|
counts = Counter()
|
|
for i in indices:
|
|
counts[i] += 1
|
|
print(counts)
|
|
# Expect an approximately uniform distribution of indices.
|
|
for i in counts.values():
|
|
self.assertTrue(100 < i < 300)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|