ray/rllib/agents/pg/pg_torch_policy.py

34 lines
1.2 KiB
Python

import ray
from ray.rllib.agents.pg.pg_tf_policy import post_process_advantages
from ray.rllib.evaluation.postprocessing import Postprocessing
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy_template import build_torch_policy
from ray.rllib.utils.framework import try_import_torch
torch, _ = try_import_torch()
def pg_torch_loss(policy, model, dist_class, train_batch):
"""The basic policy gradients loss."""
logits, _ = model.from_batch(train_batch)
action_dist = dist_class(logits, model)
log_probs = action_dist.logp(train_batch[SampleBatch.ACTIONS])
# Save the error in the policy object.
# policy.pi_err = -train_batch[Postprocessing.ADVANTAGES].dot(
# log_probs.reshape(-1)) / len(log_probs)
policy.pi_err = -torch.mean(
log_probs * train_batch[Postprocessing.ADVANTAGES])
return policy.pi_err
def pg_loss_stats(policy, train_batch):
""" The error is recorded when computing the loss."""
return {"policy_loss": policy.pi_err.item()}
PGTorchPolicy = build_torch_policy(
name="PGTorchPolicy",
get_default_config=lambda: ray.rllib.agents.pg.pg.DEFAULT_CONFIG,
loss_fn=pg_torch_loss,
stats_fn=pg_loss_stats,
postprocess_fn=post_process_advantages)