mirror of
https://github.com/vale981/ray
synced 2025-03-09 12:56:46 -04:00

This PR consolidates both #21667 and #21759 (look there for features), but improves on them in the following way: - [x] we reverted renaming of existing projects `tune`, `rllib`, `train`, `cluster`, `serve`, `raysgd` and `data` so that links won't break. I think my consolidation efforts with the `ray-` prefix were a little overeager in that regard. It's better like this. Only the creation of `ray-core` was a necessity, and some files moved into the `rllib` folder, so that should be relatively benign. - [x] Additionally, we added Algolia `docsearch`, screenshot below. This is _much_ better than our current search. Caveat: there's a sphinx dependency that needs to be replaced (`sphinx-tabs`) by another, newer one (`sphinx-panels`), as the former prevents loading of the `algolia.js` library. Will follow-up in the next PR (hoping this one doesn't get re-re-re-re-reverted).
151 lines
3.6 KiB
ReStructuredText
151 lines
3.6 KiB
ReStructuredText
Ray Tutorials and Examples
|
||
==========================
|
||
|
||
Get started with Ray, Tune, and RLlib with these notebooks that you can run online in Colab or Binder: `Ray Tutorial Notebooks <https://github.com/ray-project/tutorial>`__
|
||
|
||
|
||
Ray Examples
|
||
------------
|
||
|
||
.. raw:: html
|
||
|
||
<div class="sphx-glr-bigcontainer">
|
||
|
||
.. toctree::
|
||
:hidden:
|
||
|
||
tips-for-first-time.rst
|
||
testing-tips.rst
|
||
progress_bar.rst
|
||
plot_streaming.rst
|
||
placement-group.rst
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Tips for first time users.
|
||
:figure: /images/pipeline.png
|
||
:description: :doc:`tips-for-first-time`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Tips for testing Ray applications
|
||
:description: :doc:`testing-tips`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Progress Bar for Ray Tasks
|
||
:description: :doc:`progress_bar`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Implement a simple streaming application using Ray’s actors.
|
||
:description: :doc:`plot_streaming`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Learn placement group use cases with examples.
|
||
:description: :doc:`placement-group`
|
||
|
||
.. raw:: html
|
||
|
||
</div>
|
||
|
||
|
||
Machine Learning Examples
|
||
-------------------------
|
||
|
||
.. raw:: html
|
||
|
||
<div class="sphx-glr-bigcontainer">
|
||
|
||
.. toctree::
|
||
:hidden:
|
||
|
||
plot_parameter_server.rst
|
||
plot_hyperparameter.rst
|
||
plot_lbfgs.rst
|
||
plot_example-lm.rst
|
||
plot_newsreader.rst
|
||
dask_xgboost/dask_xgboost.rst
|
||
modin_xgboost/modin_xgboost.rst
|
||
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Build a simple parameter server using Ray.
|
||
:figure: /ray-core/images/param_actor.png
|
||
:description: :doc:`plot_parameter_server`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Simple parallel asynchronous hyperparameter evaluation.
|
||
:figure: /ray-core/images/hyperparameter.png
|
||
:description: :doc:`plot_hyperparameter`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Walkthrough of parallelizing the L-BFGS algorithm.
|
||
:description: :doc:`plot_lbfgs`
|
||
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Distributed Fault-Tolerant BERT training for FAIRSeq using Ray.
|
||
:description: :doc:`plot_example-lm`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Implementing a simple news reader using Ray.
|
||
:description: :doc:`plot_newsreader`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Train an XGBoost-Ray model using Dask for data processing.
|
||
:description: :doc:`dask_xgboost/dask_xgboost`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Train an XGBoost-Ray model using Modin for data processing.
|
||
:description: :doc:`modin_xgboost/modin_xgboost`
|
||
|
||
|
||
.. raw:: html
|
||
|
||
</div>
|
||
|
||
|
||
Reinforcement Learning Examples
|
||
-------------------------------
|
||
|
||
These are simple examples that show you how to leverage Ray Core. For Ray's production-grade reinforcement learning library, see `RLlib <http://docs.ray.io/en/latest/rllib.html>`__.
|
||
|
||
.. raw:: html
|
||
|
||
<div class="sphx-glr-bigcontainer">
|
||
|
||
.. toctree::
|
||
:hidden:
|
||
|
||
plot_pong_example.rst
|
||
plot_example-a3c.rst
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Asynchronous Advantage Actor Critic agent using Ray.
|
||
:figure: /ray-core/images/a3c.png
|
||
:description: :doc:`plot_example-a3c`
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Parallelizing a policy gradient calculation on OpenAI Gym Pong.
|
||
:figure: /images/pong.png
|
||
:description: :doc:`plot_pong_example`
|
||
|
||
.. raw:: html
|
||
|
||
</div>
|
||
|
||
End-to-end Machine Learning Guides
|
||
----------------------------------
|
||
|
||
These are full guides on how you can use Ray with various Machine Learning libraries
|
||
|
||
.. raw:: html
|
||
|
||
<div class="sphx-glr-bigcontainer">
|
||
|
||
.. toctree::
|
||
:hidden:
|
||
|
||
using-ray-with-pytorch-lightning.rst
|
||
|
||
.. customgalleryitem::
|
||
:tooltip: Using Ray with PyTorch Lightning.
|
||
:figure: /images/pytorch_lightning_small.png
|
||
:description: :doc:`using-ray-with-pytorch-lightning`
|