mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
91 lines
2.7 KiB
Python
91 lines
2.7 KiB
Python
import argparse
|
|
from gym.spaces import Dict, Tuple, Box, Discrete
|
|
import os
|
|
|
|
import ray
|
|
import ray.tune as tune
|
|
from ray.tune.registry import register_env
|
|
from ray.rllib.examples.env.nested_space_repeat_after_me_env import \
|
|
NestedSpaceRepeatAfterMeEnv
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run",
|
|
type=str,
|
|
default="PPO",
|
|
help="The RLlib-registered algorithm to use.")
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.")
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.")
|
|
parser.add_argument(
|
|
"--local-mode",
|
|
action="store_true",
|
|
help="Init Ray in local mode for easier debugging.")
|
|
parser.add_argument(
|
|
"--stop-iters",
|
|
type=int,
|
|
default=100,
|
|
help="Number of iterations to train.")
|
|
parser.add_argument(
|
|
"--stop-timesteps",
|
|
type=int,
|
|
default=100000,
|
|
help="Number of timesteps to train.")
|
|
parser.add_argument(
|
|
"--stop-reward",
|
|
type=float,
|
|
default=0.0,
|
|
help="Reward at which we stop training.")
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
|
|
register_env("NestedSpaceRepeatAfterMeEnv",
|
|
lambda c: NestedSpaceRepeatAfterMeEnv(c))
|
|
|
|
config = {
|
|
"env": "NestedSpaceRepeatAfterMeEnv",
|
|
"env_config": {
|
|
"space": Dict({
|
|
"a": Tuple(
|
|
[Dict({
|
|
"d": Box(-10.0, 10.0, ()),
|
|
"e": Discrete(2)
|
|
})]),
|
|
"b": Box(-10.0, 10.0, (2, )),
|
|
"c": Discrete(4)
|
|
}),
|
|
},
|
|
"entropy_coeff": 0.00005, # We don't want high entropy in this Env.
|
|
"gamma": 0.0, # No history in Env (bandit problem).
|
|
"lr": 0.0005,
|
|
"num_envs_per_worker": 20,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_sgd_iter": 4,
|
|
"num_workers": 0,
|
|
"vf_loss_coeff": 0.01,
|
|
"framework": args.framework,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"episode_reward_mean": args.stop_reward,
|
|
"timesteps_total": args.stop_timesteps,
|
|
}
|
|
|
|
results = tune.run(args.run, config=config, stop=stop, verbose=1)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|