ray/doc/source/index.rst
Peter Schafhalter c2ade075a3 [sgd] Distributed Training via PyTorch (#4797)
Implements distributed SGD using distributed PyTorch.
2019-06-01 21:39:22 -07:00

150 lines
4.4 KiB
ReStructuredText

Ray
===
.. raw:: html
<embed>
<a href="https://github.com/ray-project/ray"><img style="position: absolute; top: 0; right: 0; border: 0;" src="https://camo.githubusercontent.com/365986a132ccd6a44c23a9169022c0b5c890c387/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f7265645f6161303030302e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_red_aa0000.png"></a>
</embed>
*Ray is a fast and simple framework for building and running distributed applications.*
Ray is easy to install: ``pip install ray``
Example Use
-----------
+------------------------------------------------+----------------------------------------------------+
| **Basic Python** | **Distributed with Ray** |
+------------------------------------------------+----------------------------------------------------+
|.. code-block:: python |.. code-block:: python |
| | |
| # Execute f serially. | # Execute f in parallel. |
| | |
| | @ray.remote |
| def f(): | def f(): |
| time.sleep(1) | time.sleep(1) |
| return 1 | return 1 |
| | |
| | |
| | ray.init() |
| results = [f() for i in range(4)] | results = ray.get([f.remote() for i in range(4)]) |
+------------------------------------------------+----------------------------------------------------+
To launch a Ray cluster, either privately, on AWS, or on GCP, `follow these instructions <autoscaling.html>`_.
View the `codebase on GitHub`_.
.. _`codebase on GitHub`: https://github.com/ray-project/ray
Ray comes with libraries that accelerate deep learning and reinforcement learning development:
- `Tune`_: Scalable Hyperparameter Search
- `RLlib`_: Scalable Reinforcement Learning
- `Distributed Training <distributed_training.html>`__
.. _`Tune`: tune.html
.. _`RLlib`: rllib.html
.. toctree::
:maxdepth: 1
:caption: Installation
installation.rst
deploy-on-kubernetes.rst
install-on-docker.rst
installation-troubleshooting.rst
.. toctree::
:maxdepth: 1
:caption: Getting Started
tutorial.rst
api.rst
actors.rst
using-ray-with-gpus.rst
signals.rst
async_api.rst
.. toctree::
:maxdepth: 1
:caption: Cluster Usage
autoscaling.rst
using-ray-on-a-cluster.rst
.. toctree::
:maxdepth: 1
:caption: Tune
tune.rst
tune-usage.rst
tune-schedulers.rst
tune-searchalg.rst
tune-package-ref.rst
tune-design.rst
tune-examples.rst
tune-contrib.rst
.. toctree::
:maxdepth: 1
:caption: RLlib
rllib.rst
rllib-training.rst
rllib-env.rst
rllib-models.rst
rllib-algorithms.rst
rllib-offline.rst
rllib-concepts.rst
rllib-examples.rst
rllib-dev.rst
rllib-package-ref.rst
.. toctree::
:maxdepth: 1
:caption: Other Libraries
distributed_training.rst
distributed_sgd.rst
pandas_on_ray.rst
.. toctree::
:maxdepth: 1
:caption: Examples
example-rl-pong.rst
example-policy-gradient.rst
example-parameter-server.rst
example-newsreader.rst
example-resnet.rst
example-a3c.rst
example-lbfgs.rst
example-evolution-strategies.rst
example-cython.rst
example-streaming.rst
using-ray-with-tensorflow.rst
.. toctree::
:maxdepth: 1
:caption: Design
internals-overview.rst
serialization.rst
fault-tolerance.rst
plasma-object-store.rst
resources.rst
tempfile.rst
.. toctree::
:maxdepth: 1
:caption: Help
troubleshooting.rst
user-profiling.rst
security.rst
development.rst
profiling.rst
contact.rst