ray/doc/source/ray-air/benchmarks.rst
matthewdeng 6670708010
[air] add placement group max CPU to data benchmark (#26649)
Set experimental `_max_cpu_fraction_per_node` to prevent deadlock.

This should technically be a no-op with the SPREAD strategy.
2022-07-18 10:34:40 -07:00

178 lines
No EOL
5.8 KiB
ReStructuredText

Benchmarks
==========
Below we document key performance benchmarks for common AIR tasks and workflows.
Bulk Ingest
-----------
This task uses the DummyTrainer module to ingest 200GiB of synthetic data.
We test out the performance across different cluster sizes.
- `Bulk Ingest Script`_
- `Bulk Ingest Cluster Configuration`_
For this benchmark, we configured the nodes to have reasonable disk size and throughput to account for object spilling.
.. code-block:: yaml
aws:
BlockDeviceMappings:
- DeviceName: /dev/sda1
Ebs:
Iops: 5000
Throughput: 1000
VolumeSize: 1000
VolumeType: gp3
.. list-table::
* - **Cluster Setup**
- **Performance**
- **Disk Spill**
- **Command**
* - 1 m5.4xlarge node (1 actor)
- 390 s (0.51 GiB/s)
- 205 GiB
- `python data_benchmark.py --dataset-size-gb=200 --num-workers=1`
* - 5 m5.4xlarge nodes (5 actors)
- 70 s (2.85 GiB/S)
- 206 GiB
- `python data_benchmark.py --dataset-size-gb=200 --num-workers=5`
* - 20 m5.4xlarge nodes (20 actors)
- 3.8 s (52.6 GiB/s)
- 0 GiB
- `python data_benchmark.py --dataset-size-gb=200 --num-workers=20`
XGBoost Batch Prediction
------------------------
This task uses the BatchPredictor module to process different amounts of data
using an XGBoost model.
We test out the performance across different cluster sizes and data sizes.
- `XGBoost Prediction Script`_
- `XGBoost Cluster Configuration`_
.. TODO: Add script for generating data and running the benchmark.
.. list-table::
* - **Cluster Setup**
- **Data Size**
- **Performance**
- **Command**
* - 1 m5.4xlarge node (1 actor)
- 10 GB (26M rows)
- 275 s (94.5k rows/s)
- `python xgboost_benchmark.py --size 10GB`
* - 10 m5.4xlarge nodes (10 actors)
- 100 GB (260M rows)
- 331 s (786k rows/s)
- `python xgboost_benchmark.py --size 100GB`
XGBoost training
----------------
This task uses the XGBoostTrainer module to train on different sizes of data
with different amounts of parallelism.
XGBoost parameters were kept as defaults for xgboost==1.6.1 this task.
- `XGBoost Training Script`_
- `XGBoost Cluster Configuration`_
.. list-table::
* - **Cluster Setup**
- **Data Size**
- **Performance**
- **Command**
* - 1 m5.4xlarge node (1 actor)
- 10 GB (26M rows)
- 692 s
- `python xgboost_benchmark.py --size 10GB`
* - 10 m5.4xlarge nodes (10 actors)
- 100 GB (260M rows)
- 693 s
- `python xgboost_benchmark.py --size 100GB`
GPU image batch prediction
----------------------------------------------------
This task uses the BatchPredictor module to process different amounts of data
using a Pytorch pre-trained ResNet model.
We test out the performance across different cluster sizes and data sizes.
- `GPU image batch prediction script`_
.. list-table::
* - **Cluster Setup**
- **Data Size**
- **Performance**
- **Command**
* - 1 g3.8xlarge node
- 1 GB (1623 images)
- 72.59 s (22.3 images/sec)
- `python gpu_batch_prediction.py --data-size-gb=1`
* - 1 g3.8xlarge node
- 20 GB (32460 images)
- 1213.48 s (26.76 images/sec)
- `python gpu_batch_prediction.py --data-size-gb=20`
* - 4 g3.16xlarge nodes
- 100 GB (162300 images)
- 885.98 s (183.19 images/sec)
- `python gpu_batch_prediction.py --data-size-gb=100`
GPU image training
------------------------
This task uses the TorchTrainer module to train different amounts of data
using an Pytorch ResNet model.
We test out the performance across different cluster sizes and data sizes.
- `GPU image training script`_
.. note::
For multi-host distributed training, on AWS we need to ensure ec2 instances are in the same VPC and
all ports are open in the secure group.
.. list-table::
* - **Cluster Setup**
- **Data Size**
- **Performance**
- **Command**
* - 1 g3.8xlarge node (1 worker)
- 1 GB (1623 images)
- 79.76 s (2 epochs, 40.7 images/sec)
- `python pytorch_training_e2e.py --data-size-gb=1`
* - 1 g3.8xlarge node (1 worker)
- 20 GB (32460 images)
- 1388.33 s (2 epochs, 46.76 images/sec)
- `python pytorch_training_e2e.py --data-size-gb=20`
* - 4 g3.16xlarge nodes (16 workers)
- 100 GB (162300 images)
- 434.95 s (2 epochs, 746.29 images/sec)
- `python pytorch_training_e2e.py --data-size-gb=100 --num-workers=16`
.. _`Bulk Ingest Script`: https://github.com/ray-project/ray/blob/a30bdf9ef34a45f973b589993f7707a763df6ebf/release/air_tests/air_benchmarks/workloads/data_benchmark.py#L25-L40
.. _`Bulk Ingest Cluster Configuration`: https://github.com/ray-project/ray/blob/a30bdf9ef34a45f973b589993f7707a763df6ebf/release/air_tests/air_benchmarks/data_20_nodes.yaml#L6-L15
.. _`XGBoost Training Script`: https://github.com/ray-project/ray/blob/a241e6a0f5a630d6ed5b84cce30c51963834d15b/release/air_tests/air_benchmarks/workloads/xgboost_benchmark.py#L40-L58
.. _`XGBoost Prediction Script`: https://github.com/ray-project/ray/blob/a241e6a0f5a630d6ed5b84cce30c51963834d15b/release/air_tests/air_benchmarks/workloads/xgboost_benchmark.py#L63-L71
.. _`XGBoost Cluster Configuration`: https://github.com/ray-project/ray/blob/a241e6a0f5a630d6ed5b84cce30c51963834d15b/release/air_tests/air_benchmarks/xgboost_compute_tpl.yaml#L6-L24
.. _`GPU image batch prediction script`: https://github.com/ray-project/ray/blob/cec82a1ced631525a4d115e4dc0c283fa4275a7f/release/air_tests/air_benchmarks/workloads/gpu_batch_prediction.py#L18-L49
.. _`GPU image training script`: https://github.com/ray-project/ray/blob/cec82a1ced631525a4d115e4dc0c283fa4275a7f/release/air_tests/air_benchmarks/workloads/pytorch_training_e2e.py#L95-L106