mirror of
https://github.com/vale981/ray
synced 2025-03-08 11:31:40 -05:00

Set experimental `_max_cpu_fraction_per_node` to prevent deadlock. This should technically be a no-op with the SPREAD strategy.
178 lines
No EOL
5.8 KiB
ReStructuredText
178 lines
No EOL
5.8 KiB
ReStructuredText
Benchmarks
|
|
==========
|
|
|
|
Below we document key performance benchmarks for common AIR tasks and workflows.
|
|
|
|
Bulk Ingest
|
|
-----------
|
|
|
|
This task uses the DummyTrainer module to ingest 200GiB of synthetic data.
|
|
|
|
We test out the performance across different cluster sizes.
|
|
|
|
- `Bulk Ingest Script`_
|
|
- `Bulk Ingest Cluster Configuration`_
|
|
|
|
For this benchmark, we configured the nodes to have reasonable disk size and throughput to account for object spilling.
|
|
|
|
.. code-block:: yaml
|
|
|
|
aws:
|
|
BlockDeviceMappings:
|
|
- DeviceName: /dev/sda1
|
|
Ebs:
|
|
Iops: 5000
|
|
Throughput: 1000
|
|
VolumeSize: 1000
|
|
VolumeType: gp3
|
|
|
|
.. list-table::
|
|
|
|
* - **Cluster Setup**
|
|
- **Performance**
|
|
- **Disk Spill**
|
|
- **Command**
|
|
* - 1 m5.4xlarge node (1 actor)
|
|
- 390 s (0.51 GiB/s)
|
|
- 205 GiB
|
|
- `python data_benchmark.py --dataset-size-gb=200 --num-workers=1`
|
|
* - 5 m5.4xlarge nodes (5 actors)
|
|
- 70 s (2.85 GiB/S)
|
|
- 206 GiB
|
|
- `python data_benchmark.py --dataset-size-gb=200 --num-workers=5`
|
|
* - 20 m5.4xlarge nodes (20 actors)
|
|
- 3.8 s (52.6 GiB/s)
|
|
- 0 GiB
|
|
- `python data_benchmark.py --dataset-size-gb=200 --num-workers=20`
|
|
|
|
|
|
XGBoost Batch Prediction
|
|
------------------------
|
|
|
|
This task uses the BatchPredictor module to process different amounts of data
|
|
using an XGBoost model.
|
|
|
|
We test out the performance across different cluster sizes and data sizes.
|
|
|
|
- `XGBoost Prediction Script`_
|
|
- `XGBoost Cluster Configuration`_
|
|
|
|
.. TODO: Add script for generating data and running the benchmark.
|
|
|
|
.. list-table::
|
|
|
|
* - **Cluster Setup**
|
|
- **Data Size**
|
|
- **Performance**
|
|
- **Command**
|
|
* - 1 m5.4xlarge node (1 actor)
|
|
- 10 GB (26M rows)
|
|
- 275 s (94.5k rows/s)
|
|
- `python xgboost_benchmark.py --size 10GB`
|
|
* - 10 m5.4xlarge nodes (10 actors)
|
|
- 100 GB (260M rows)
|
|
- 331 s (786k rows/s)
|
|
- `python xgboost_benchmark.py --size 100GB`
|
|
|
|
|
|
XGBoost training
|
|
----------------
|
|
|
|
This task uses the XGBoostTrainer module to train on different sizes of data
|
|
with different amounts of parallelism.
|
|
|
|
XGBoost parameters were kept as defaults for xgboost==1.6.1 this task.
|
|
|
|
|
|
- `XGBoost Training Script`_
|
|
- `XGBoost Cluster Configuration`_
|
|
|
|
.. list-table::
|
|
|
|
* - **Cluster Setup**
|
|
- **Data Size**
|
|
- **Performance**
|
|
- **Command**
|
|
* - 1 m5.4xlarge node (1 actor)
|
|
- 10 GB (26M rows)
|
|
- 692 s
|
|
- `python xgboost_benchmark.py --size 10GB`
|
|
* - 10 m5.4xlarge nodes (10 actors)
|
|
- 100 GB (260M rows)
|
|
- 693 s
|
|
- `python xgboost_benchmark.py --size 100GB`
|
|
|
|
|
|
GPU image batch prediction
|
|
----------------------------------------------------
|
|
|
|
This task uses the BatchPredictor module to process different amounts of data
|
|
using a Pytorch pre-trained ResNet model.
|
|
|
|
We test out the performance across different cluster sizes and data sizes.
|
|
|
|
- `GPU image batch prediction script`_
|
|
|
|
.. list-table::
|
|
|
|
* - **Cluster Setup**
|
|
- **Data Size**
|
|
- **Performance**
|
|
- **Command**
|
|
* - 1 g3.8xlarge node
|
|
- 1 GB (1623 images)
|
|
- 72.59 s (22.3 images/sec)
|
|
- `python gpu_batch_prediction.py --data-size-gb=1`
|
|
* - 1 g3.8xlarge node
|
|
- 20 GB (32460 images)
|
|
- 1213.48 s (26.76 images/sec)
|
|
- `python gpu_batch_prediction.py --data-size-gb=20`
|
|
* - 4 g3.16xlarge nodes
|
|
- 100 GB (162300 images)
|
|
- 885.98 s (183.19 images/sec)
|
|
- `python gpu_batch_prediction.py --data-size-gb=100`
|
|
|
|
|
|
GPU image training
|
|
------------------------
|
|
|
|
This task uses the TorchTrainer module to train different amounts of data
|
|
using an Pytorch ResNet model.
|
|
|
|
We test out the performance across different cluster sizes and data sizes.
|
|
|
|
- `GPU image training script`_
|
|
|
|
.. note::
|
|
|
|
For multi-host distributed training, on AWS we need to ensure ec2 instances are in the same VPC and
|
|
all ports are open in the secure group.
|
|
|
|
|
|
.. list-table::
|
|
|
|
* - **Cluster Setup**
|
|
- **Data Size**
|
|
- **Performance**
|
|
- **Command**
|
|
* - 1 g3.8xlarge node (1 worker)
|
|
- 1 GB (1623 images)
|
|
- 79.76 s (2 epochs, 40.7 images/sec)
|
|
- `python pytorch_training_e2e.py --data-size-gb=1`
|
|
* - 1 g3.8xlarge node (1 worker)
|
|
- 20 GB (32460 images)
|
|
- 1388.33 s (2 epochs, 46.76 images/sec)
|
|
- `python pytorch_training_e2e.py --data-size-gb=20`
|
|
* - 4 g3.16xlarge nodes (16 workers)
|
|
- 100 GB (162300 images)
|
|
- 434.95 s (2 epochs, 746.29 images/sec)
|
|
- `python pytorch_training_e2e.py --data-size-gb=100 --num-workers=16`
|
|
|
|
|
|
.. _`Bulk Ingest Script`: https://github.com/ray-project/ray/blob/a30bdf9ef34a45f973b589993f7707a763df6ebf/release/air_tests/air_benchmarks/workloads/data_benchmark.py#L25-L40
|
|
.. _`Bulk Ingest Cluster Configuration`: https://github.com/ray-project/ray/blob/a30bdf9ef34a45f973b589993f7707a763df6ebf/release/air_tests/air_benchmarks/data_20_nodes.yaml#L6-L15
|
|
.. _`XGBoost Training Script`: https://github.com/ray-project/ray/blob/a241e6a0f5a630d6ed5b84cce30c51963834d15b/release/air_tests/air_benchmarks/workloads/xgboost_benchmark.py#L40-L58
|
|
.. _`XGBoost Prediction Script`: https://github.com/ray-project/ray/blob/a241e6a0f5a630d6ed5b84cce30c51963834d15b/release/air_tests/air_benchmarks/workloads/xgboost_benchmark.py#L63-L71
|
|
.. _`XGBoost Cluster Configuration`: https://github.com/ray-project/ray/blob/a241e6a0f5a630d6ed5b84cce30c51963834d15b/release/air_tests/air_benchmarks/xgboost_compute_tpl.yaml#L6-L24
|
|
.. _`GPU image batch prediction script`: https://github.com/ray-project/ray/blob/cec82a1ced631525a4d115e4dc0c283fa4275a7f/release/air_tests/air_benchmarks/workloads/gpu_batch_prediction.py#L18-L49
|
|
.. _`GPU image training script`: https://github.com/ray-project/ray/blob/cec82a1ced631525a4d115e4dc0c283fa4275a7f/release/air_tests/air_benchmarks/workloads/pytorch_training_e2e.py#L95-L106 |