ray/rllib/examples/env/stateless_cartpole.py

38 lines
1.2 KiB
Python

from gym.spaces import Box
import numpy as np
from gym.envs.classic_control import CartPoleEnv
class StatelessCartPole(CartPoleEnv):
"""Partially observable variant of the CartPole gym environment.
https://github.com/openai/gym/blob/master/gym/envs/classic_control/
cartpole.py
We delete the x- and angular velocity components of the state, so that it
can only be solved by a memory enhanced model (policy).
"""
def __init__(self, config=None):
super().__init__()
# Fix our observation-space (remove 2 velocity components).
high = np.array(
[
self.x_threshold * 2,
self.theta_threshold_radians * 2,
],
dtype=np.float32)
self.observation_space = Box(low=-high, high=high, dtype=np.float32)
def step(self, action):
next_obs, reward, done, info = super().step(action)
# next_obs is [x-pos, x-veloc, angle, angle-veloc]
return np.array([next_obs[0], next_obs[2]]), reward, done, info
def reset(self):
init_obs = super().reset()
# init_obs is [x-pos, x-veloc, angle, angle-veloc]
return np.array([init_obs[0], init_obs[2]])