ray/rllib/tests/test_external_multi_agent_env.py

93 lines
3.5 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gym
import numpy as np
import random
import unittest
import ray
from ray.rllib.agents.pg.pg_policy import PGTFPolicy
from ray.rllib.optimizers import SyncSamplesOptimizer
from ray.rllib.evaluation.rollout_worker import RolloutWorker
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.env.external_multi_agent_env import ExternalMultiAgentEnv
from ray.rllib.tests.test_rollout_worker import MockPolicy
from ray.rllib.tests.test_external_env import make_simple_serving
from ray.rllib.tests.test_multi_agent_env import BasicMultiAgent, MultiCartpole
from ray.rllib.evaluation.metrics import collect_metrics
SimpleMultiServing = make_simple_serving(True, ExternalMultiAgentEnv)
class TestExternalMultiAgentEnv(unittest.TestCase):
def testExternalMultiAgentEnvCompleteEpisodes(self):
agents = 4
ev = RolloutWorker(
env_creator=lambda _: SimpleMultiServing(BasicMultiAgent(agents)),
policy=MockPolicy,
batch_steps=40,
batch_mode="complete_episodes")
for _ in range(3):
batch = ev.sample()
self.assertEqual(batch.count, 40)
self.assertEqual(len(np.unique(batch["agent_index"])), agents)
def testExternalMultiAgentEnvTruncateEpisodes(self):
agents = 4
ev = RolloutWorker(
env_creator=lambda _: SimpleMultiServing(BasicMultiAgent(agents)),
policy=MockPolicy,
batch_steps=40,
batch_mode="truncate_episodes")
for _ in range(3):
batch = ev.sample()
self.assertEqual(batch.count, 160)
self.assertEqual(len(np.unique(batch["agent_index"])), agents)
def testExternalMultiAgentEnvSample(self):
agents = 2
act_space = gym.spaces.Discrete(2)
obs_space = gym.spaces.Discrete(2)
ev = RolloutWorker(
env_creator=lambda _: SimpleMultiServing(BasicMultiAgent(agents)),
policy={
"p0": (MockPolicy, obs_space, act_space, {}),
"p1": (MockPolicy, obs_space, act_space, {}),
},
policy_mapping_fn=lambda agent_id: "p{}".format(agent_id % 2),
batch_steps=50)
batch = ev.sample()
self.assertEqual(batch.count, 50)
def testTrainExternalMultiCartpoleManyPolicies(self):
n = 20
single_env = gym.make("CartPole-v0")
act_space = single_env.action_space
obs_space = single_env.observation_space
policies = {}
for i in range(20):
policies["pg_{}".format(i)] = (PGTFPolicy, obs_space, act_space,
{})
policy_ids = list(policies.keys())
ev = RolloutWorker(
env_creator=lambda _: MultiCartpole(n),
policy=policies,
policy_mapping_fn=lambda agent_id: random.choice(policy_ids),
batch_steps=100)
optimizer = SyncSamplesOptimizer(WorkerSet._from_existing(ev))
for i in range(100):
optimizer.step()
result = collect_metrics(ev)
print("Iteration {}, rew {}".format(i,
result["policy_reward_mean"]))
print("Total reward", result["episode_reward_mean"])
if result["episode_reward_mean"] >= 25 * n:
return
raise Exception("failed to improve reward")
if __name__ == "__main__":
ray.init()
unittest.main(verbosity=2)