mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
68 lines
2.4 KiB
Python
68 lines
2.4 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import ray
|
|
from ray.rllib.agents.dqn import DQNTrainer
|
|
from ray.rllib.agents.a3c import A3CTrainer
|
|
from ray.rllib.agents.dqn.dqn_policy import _adjust_nstep
|
|
from ray.tune.registry import register_env
|
|
import gym
|
|
|
|
|
|
class EvalTest(unittest.TestCase):
|
|
def testDqnNStep(self):
|
|
obs = [1, 2, 3, 4, 5, 6, 7]
|
|
actions = ["a", "b", "a", "a", "a", "b", "a"]
|
|
rewards = [10.0, 0.0, 100.0, 100.0, 100.0, 100.0, 100.0]
|
|
new_obs = [2, 3, 4, 5, 6, 7, 8]
|
|
dones = [0, 0, 0, 0, 0, 0, 1]
|
|
_adjust_nstep(3, 0.9, obs, actions, rewards, new_obs, dones)
|
|
self.assertEqual(obs, [1, 2, 3, 4, 5, 6, 7])
|
|
self.assertEqual(actions, ["a", "b", "a", "a", "a", "b", "a"])
|
|
self.assertEqual(new_obs, [4, 5, 6, 7, 8, 8, 8])
|
|
self.assertEqual(dones, [0, 0, 0, 0, 1, 1, 1])
|
|
self.assertEqual(rewards,
|
|
[91.0, 171.0, 271.0, 271.0, 271.0, 190.0, 100.0])
|
|
|
|
def testEvaluationOption(self):
|
|
def env_creator(env_config):
|
|
return gym.make("CartPole-v0")
|
|
|
|
agent_classes = [DQNTrainer, A3CTrainer]
|
|
|
|
for agent_cls in agent_classes:
|
|
ray.init(object_store_memory=1000 * 1024 * 1024)
|
|
register_env("CartPoleWrapped-v0", env_creator)
|
|
agent = agent_cls(
|
|
env="CartPoleWrapped-v0",
|
|
config={
|
|
"evaluation_interval": 2,
|
|
"evaluation_num_episodes": 2,
|
|
"evaluation_config": {
|
|
"gamma": 0.98,
|
|
"env_config": {
|
|
"fake_arg": True
|
|
}
|
|
},
|
|
})
|
|
# Given evaluation_interval=2, r0, r2, r4 should not contain
|
|
# evaluation metrics while r1, r3 should do.
|
|
r0 = agent.train()
|
|
r1 = agent.train()
|
|
r2 = agent.train()
|
|
r3 = agent.train()
|
|
|
|
self.assertTrue("evaluation" in r1)
|
|
self.assertTrue("evaluation" in r3)
|
|
self.assertFalse("evaluation" in r0)
|
|
self.assertFalse("evaluation" in r2)
|
|
self.assertTrue("episode_reward_mean" in r1["evaluation"])
|
|
self.assertNotEqual(r1["evaluation"], r3["evaluation"])
|
|
ray.shutdown()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main(verbosity=2)
|