ray/rllib/agents/dqn/tests/test_r2d2.py

55 lines
1.7 KiB
Python

import unittest
import ray
import ray.rllib.agents.dqn as dqn
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.test_utils import check_compute_single_action, \
check_train_results, framework_iterator
tf1, tf, tfv = try_import_tf()
torch, nn = try_import_torch()
class TestR2D2(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_r2d2_compilation(self):
"""Test whether a R2D2Trainer can be built on all frameworks."""
config = dqn.R2D2_DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
# Wrap with an LSTM and use a very simple base-model.
config["model"]["use_lstm"] = True
config["model"]["max_seq_len"] = 20
config["model"]["fcnet_hiddens"] = [32]
config["model"]["lstm_cell_size"] = 64
config["burn_in"] = 20
config["zero_init_states"] = True
config["dueling"] = False
config["lr"] = 5e-4
config["exploration_config"]["epsilon_timesteps"] = 100000
num_iterations = 1
# Test building an R2D2 agent in all frameworks.
for _ in framework_iterator(config):
trainer = dqn.R2D2Trainer(config=config, env="CartPole-v0")
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
check_compute_single_action(trainer, include_state=True)
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))