mirror of
https://github.com/vale981/ray
synced 2025-03-08 19:41:38 -05:00

This PR adds a user guide to AIR for using Ray Train. It provides a high level overview of the trainers and removes redundant sections. The main file to review is here: doc/source/ray-air/trainer.rst. Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com> Signed-off-by: Richard Liaw <rliaw@berkeley.edu> Signed-off-by: Kai Fricke <kai@anyscale.com> Co-authored-by: Richard Liaw <rliaw@berkeley.edu> Co-authored-by: Kai Fricke <kai@anyscale.com>
16 lines
476 B
Python
16 lines
476 B
Python
from ray.air.config import RunConfig, ScalingConfig
|
|
from ray.train.rl import RLTrainer
|
|
|
|
trainer = RLTrainer(
|
|
run_config=RunConfig(stop={"training_iteration": 5}),
|
|
scaling_config=ScalingConfig(num_workers=2, use_gpu=False),
|
|
algorithm="PPO",
|
|
config={
|
|
"env": "CartPole-v0",
|
|
"framework": "tf",
|
|
"evaluation_num_workers": 1,
|
|
"evaluation_interval": 1,
|
|
"evaluation_config": {"input": "sampler"},
|
|
},
|
|
)
|
|
result = trainer.fit()
|