ray/doc/source/index.rst

277 lines
6.9 KiB
ReStructuredText

Ray
===
.. raw:: html
<embed>
<a href="https://github.com/ray-project/ray"><img style="position: absolute; top: 0; right: 0; border: 0;" src="https://camo.githubusercontent.com/365986a132ccd6a44c23a9169022c0b5c890c387/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f7265645f6161303030302e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_red_aa0000.png"></a>
</embed>
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
**Ray is a fast and simple framework for building and running distributed applications.**
Ray is packaged with the following libraries for accelerating machine learning workloads:
- `Tune`_: Scalable Hyperparameter Tuning
- `RLlib`_: Scalable Reinforcement Learning
- `Distributed Training <distributed_training.html>`__
Install Ray with: ``pip install ray``. For nightly wheels, see the `Installation page <installation.html>`__.
View the `codebase on GitHub`_.
.. _`codebase on GitHub`: https://github.com/ray-project/ray
Quick Start
-----------
Execute Python functions in parallel.
.. code-block:: python
import ray
ray.init()
@ray.remote
def f(x):
return x * x
futures = [f.remote(i) for i in range(4)]
print(ray.get(futures))
To use Ray's actor model:
.. code-block:: python
import ray
ray.init()
@ray.remote
class Counter():
def __init__(self):
self.n = 0
def increment(self):
self.n += 1
def read(self):
return self.n
counters = [Counter.remote() for i in range(4)]
[c.increment.remote() for c in counters]
futures = [c.read.remote() for c in counters]
print(ray.get(futures))
Visit the `Walkthrough <walkthrough.html>`_ page a more comprehensive overview of Ray features.
Ray programs can run on a single machine, and can also seamlessly scale to large clusters. To execute the above Ray script in the cloud, just download `this configuration file <https://github.com/ray-project/ray/blob/master/python/ray/autoscaler/aws/example-full.yaml>`__, and run:
``ray submit [CLUSTER.YAML] example.py --start``
Read more about `launching clusters <autoscaling.html>`_.
Tune Quick Start
----------------
`Tune`_ is a library for hyperparameter tuning at any scale. With Tune, you can launch a multi-node distributed hyperparameter sweep in less than 10 lines of code. Tune supports any deep learning framework, including PyTorch, TensorFlow, and Keras.
.. note::
To run this example, you will need to install the following:
.. code-block:: bash
$ pip install ray torch torchvision filelock
This example runs a small grid search to train a CNN using PyTorch and Tune.
.. literalinclude:: ../../python/ray/tune/tests/example.py
:language: python
:start-after: __quick_start_begin__
:end-before: __quick_start_end__
If TensorBoard is installed, automatically visualize all trial results:
.. code-block:: bash
tensorboard --logdir ~/ray_results
.. _`Tune`: tune.html
RLlib Quick Start
-----------------
`RLlib`_ is an open-source library for reinforcement learning built on top of Ray that offers both high scalability and a unified API for a variety of applications.
.. code-block:: bash
pip install tensorflow # or tensorflow-gpu
pip install ray[rllib] # also recommended: ray[debug]
.. code-block:: python
import gym
from gym.spaces import Discrete, Box
from ray import tune
class SimpleCorridor(gym.Env):
def __init__(self, config):
self.end_pos = config["corridor_length"]
self.cur_pos = 0
self.action_space = Discrete(2)
self.observation_space = Box(0.0, self.end_pos, shape=(1, ))
def reset(self):
self.cur_pos = 0
return [self.cur_pos]
def step(self, action):
if action == 0 and self.cur_pos > 0:
self.cur_pos -= 1
elif action == 1:
self.cur_pos += 1
done = self.cur_pos >= self.end_pos
return [self.cur_pos], 1 if done else 0, done, {}
tune.run(
"PPO",
config={
"env": SimpleCorridor,
"num_workers": 4,
"env_config": {"corridor_length": 5}})
.. _`RLlib`: rllib.html
More Information
----------------
- `Tutorial`_
- `Blog`_
- `Ray paper`_
- `Ray HotOS paper`_
- `RLlib paper`_
- `Tune paper`_
.. _`Tutorial`: https://github.com/ray-project/tutorial
.. _`Blog`: https://ray-project.github.io/
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
Getting Involved
----------------
- `ray-dev@googlegroups.com`_: For discussions about development or any general
questions.
- `StackOverflow`_: For questions about how to use Ray.
- `GitHub Issues`_: For reporting bugs and feature requests.
- `Pull Requests`_: For submitting code contributions.
.. _`ray-dev@googlegroups.com`: https://groups.google.com/forum/#!forum/ray-dev
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. _`Pull Requests`: https://github.com/ray-project/ray/pulls
.. toctree::
:maxdepth: -1
:caption: Installation
installation.rst
.. toctree::
:maxdepth: -1
:caption: Using Ray
walkthrough.rst
actors.rst
using-ray-with-gpus.rst
user-profiling.rst
inspect.rst
object-store.rst
configure.rst
memory-management.rst
advanced.rst
troubleshooting.rst
package-ref.rst
.. toctree::
:maxdepth: -1
:caption: Cluster Setup
autoscaling.rst
using-ray-on-a-cluster.rst
deploy-on-kubernetes.rst
deploying-on-slurm.rst
.. toctree::
:maxdepth: -1
:caption: Tune
tune.rst
tune-tutorial.rst
tune-usage.rst
tune-distributed.rst
tune-schedulers.rst
tune-searchalg.rst
tune-package-ref.rst
tune-design.rst
tune-examples.rst
tune-contrib.rst
.. toctree::
:maxdepth: -1
:caption: RLlib
rllib.rst
rllib-toc.rst
rllib-training.rst
rllib-env.rst
rllib-models.rst
rllib-algorithms.rst
rllib-offline.rst
rllib-concepts.rst
rllib-examples.rst
rllib-dev.rst
rllib-package-ref.rst
.. toctree::
:maxdepth: -1
:caption: Experimental
distributed_training.rst
tf_distributed_training.rst
pandas_on_ray.rst
projects.rst
signals.rst
async_api.rst
.. toctree::
:maxdepth: -1
:caption: Examples
example-rl-pong.rst
example-parameter-server.rst
example-newsreader.rst
example-resnet.rst
example-a3c.rst
example-lbfgs.rst
example-streaming.rst
using-ray-with-tensorflow.rst
using-ray-with-pytorch.rst
.. toctree::
:maxdepth: -1
:caption: Development and Internals
development.rst
profiling.rst
internals-overview.rst
fault-tolerance.rst
contrib.rst