mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
127 lines
3.9 KiB
Python
127 lines
3.9 KiB
Python
import argparse
|
|
import numpy as np
|
|
|
|
import ray
|
|
from ray.rllib.algorithms.ppo import PPO
|
|
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
|
|
from ray.rllib.examples.models.trajectory_view_utilizing_models import (
|
|
FrameStackingCartPoleModel,
|
|
TorchFrameStackingCartPoleModel,
|
|
)
|
|
from ray.rllib.models.catalog import ModelCatalog
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
from ray import tune
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
|
|
)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=50, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=200000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init(num_cpus=3)
|
|
|
|
num_frames = 16
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"frame_stack_model",
|
|
FrameStackingCartPoleModel
|
|
if args.framework != "torch"
|
|
else TorchFrameStackingCartPoleModel,
|
|
)
|
|
|
|
config = {
|
|
"env": StatelessCartPole,
|
|
"model": {
|
|
"vf_share_layers": True,
|
|
"custom_model": "frame_stack_model",
|
|
"custom_model_config": {
|
|
"num_frames": num_frames,
|
|
},
|
|
# To compare against a simple LSTM:
|
|
# "use_lstm": True,
|
|
# "lstm_use_prev_action": True,
|
|
# "lstm_use_prev_reward": True,
|
|
# To compare against a simple attention net:
|
|
# "use_attention": True,
|
|
# "attention_use_n_prev_actions": 1,
|
|
# "attention_use_n_prev_rewards": 1,
|
|
},
|
|
"num_sgd_iter": 5,
|
|
"vf_loss_coeff": 0.0001,
|
|
"framework": args.framework,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
results = tune.run(
|
|
args.run, config=config, stop=stop, verbose=2, checkpoint_at_end=True
|
|
)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
checkpoints = results.get_trial_checkpoints_paths(
|
|
trial=results.get_best_trial("episode_reward_mean", mode="max"),
|
|
metric="episode_reward_mean",
|
|
)
|
|
|
|
checkpoint_path = checkpoints[0][0]
|
|
algo = PPO(config)
|
|
algo.restore(checkpoint_path)
|
|
|
|
# Inference loop.
|
|
env = StatelessCartPole()
|
|
|
|
# Run manual inference loop for n episodes.
|
|
for _ in range(10):
|
|
episode_reward = 0.0
|
|
reward = 0.0
|
|
action = 0
|
|
done = False
|
|
obs = env.reset()
|
|
while not done:
|
|
# Create a dummy action using the same observation n times,
|
|
# as well as dummy prev-n-actions and prev-n-rewards.
|
|
action, state, logits = algo.compute_single_action(
|
|
input_dict={
|
|
"obs": obs,
|
|
"prev_n_obs": np.stack([obs for _ in range(num_frames)]),
|
|
"prev_n_actions": np.stack([0 for _ in range(num_frames)]),
|
|
"prev_n_rewards": np.stack([1.0 for _ in range(num_frames)]),
|
|
},
|
|
full_fetch=True,
|
|
)
|
|
obs, reward, done, info = env.step(action)
|
|
episode_reward += reward
|
|
|
|
print(f"Episode reward={episode_reward}")
|
|
|
|
ray.shutdown()
|