mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
69 lines
2.4 KiB
Python
69 lines
2.4 KiB
Python
"""
|
|
Example of a fully deterministic, repeatable RLlib train run using
|
|
the "seed" config key.
|
|
"""
|
|
import argparse
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.examples.env.env_using_remote_actor import (
|
|
CartPoleWithRemoteParamServer,
|
|
ParameterStorage,
|
|
)
|
|
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
|
|
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO
|
|
from ray.rllib.utils.test_utils import check
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--run", type=str, default="PPO")
|
|
parser.add_argument("--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf")
|
|
parser.add_argument("--seed", type=int, default=42)
|
|
parser.add_argument("--as-test", action="store_true")
|
|
parser.add_argument("--stop-iters", type=int, default=2)
|
|
parser.add_argument("--num-gpus", type=float, default=0)
|
|
parser.add_argument("--num-gpus-per-worker", type=float, default=0)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
|
|
param_storage = ParameterStorage.options(name="param-server").remote()
|
|
|
|
config = {
|
|
"env": CartPoleWithRemoteParamServer,
|
|
"env_config": {
|
|
"param_server": "param-server",
|
|
},
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": args.num_gpus,
|
|
"num_workers": 1, # parallelism
|
|
"num_gpus_per_worker": args.num_gpus_per_worker,
|
|
"num_envs_per_worker": 2,
|
|
"framework": args.framework,
|
|
# Make sure every environment gets a fixed seed.
|
|
"seed": args.seed,
|
|
# Simplify to run this example script faster.
|
|
"train_batch_size": 100,
|
|
"sgd_minibatch_size": 10,
|
|
"num_sgd_iter": 5,
|
|
"rollout_fragment_length": 50,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
}
|
|
|
|
results1 = tune.run(args.run, config=config, stop=stop, verbose=1)
|
|
results2 = tune.run(args.run, config=config, stop=stop, verbose=1)
|
|
|
|
if args.as_test:
|
|
results1 = list(results1.results.values())[0]
|
|
results2 = list(results2.results.values())[0]
|
|
# Test rollout behavior.
|
|
check(results1["hist_stats"], results2["hist_stats"])
|
|
# As well as training behavior (minibatch sequence during SGD
|
|
# iterations).
|
|
check(
|
|
results1["info"][LEARNER_INFO][DEFAULT_POLICY_ID]["learner_stats"],
|
|
results2["info"][LEARNER_INFO][DEFAULT_POLICY_ID]["learner_stats"],
|
|
)
|
|
ray.shutdown()
|