mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
200 lines
6.8 KiB
Python
200 lines
6.8 KiB
Python
"""
|
|
Example of specifying an autoregressive action distribution.
|
|
|
|
In an action space with multiple components (e.g., Tuple(a1, a2)), you might
|
|
want a2 to be sampled based on the sampled value of a1, i.e.,
|
|
a2_sampled ~ P(a2 | a1_sampled, obs). Normally, a1 and a2 would be sampled
|
|
independently.
|
|
|
|
To do this, you need both a custom model that implements the autoregressive
|
|
pattern, and a custom action distribution class that leverages that model.
|
|
This examples shows both.
|
|
|
|
Related paper: https://arxiv.org/abs/1903.11524
|
|
|
|
The example uses the CorrelatedActionsEnv where the agent observes a random
|
|
number (0 or 1) and has to choose two actions a1 and a2.
|
|
Action a1 should match the observation (+5 reward) and a2 should match a1
|
|
(+5 reward).
|
|
Since a2 should depend on a1, an autoregressive action dist makes sense.
|
|
|
|
---
|
|
To better understand the environment, run 1 manual train iteration and test
|
|
loop without Tune:
|
|
$ python autoregressive_action_dist.py --stop-iters 1 --no-tune
|
|
|
|
Run this example with defaults (using Tune and autoregressive action dist):
|
|
$ python autoregressive_action_dist.py
|
|
Then run again without autoregressive actions:
|
|
$ python autoregressive_action_dist.py --no-autoreg
|
|
# TODO: Why does this lead to better results than autoregressive actions?
|
|
Compare learning curve on TensorBoard:
|
|
$ cd ~/ray-results/; tensorboard --logdir .
|
|
|
|
Other options for running this example:
|
|
$ python attention_net.py --help
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.algorithms import ppo
|
|
from ray.rllib.examples.env.correlated_actions_env import CorrelatedActionsEnv
|
|
from ray.rllib.examples.models.autoregressive_action_model import (
|
|
AutoregressiveActionModel,
|
|
TorchAutoregressiveActionModel,
|
|
)
|
|
from ray.rllib.examples.models.autoregressive_action_dist import (
|
|
BinaryAutoregressiveDistribution,
|
|
TorchBinaryAutoregressiveDistribution,
|
|
)
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
from ray.tune.logger import pretty_print
|
|
|
|
|
|
def get_cli_args():
|
|
"""Create CLI parser and return parsed arguments"""
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# example-specific arg: disable autoregressive action dist
|
|
parser.add_argument(
|
|
"--no-autoreg",
|
|
action="store_true",
|
|
help="Do NOT use an autoregressive action distribution but normal,"
|
|
"independently distributed actions.",
|
|
)
|
|
|
|
# general args
|
|
parser.add_argument(
|
|
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
|
|
)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=200, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps",
|
|
type=int,
|
|
default=100000,
|
|
help="Number of timesteps to train.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward",
|
|
type=float,
|
|
default=200.0,
|
|
help="Reward at which we stop training.",
|
|
)
|
|
parser.add_argument(
|
|
"--no-tune",
|
|
action="store_true",
|
|
help="Run without Tune using a manual train loop instead. Here,"
|
|
"there is no TensorBoard support.",
|
|
)
|
|
parser.add_argument(
|
|
"--local-mode",
|
|
action="store_true",
|
|
help="Init Ray in local mode for easier debugging.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
print(f"Running with following CLI args: {args}")
|
|
return args
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_cli_args()
|
|
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
|
|
|
|
# main part: register and configure autoregressive action model and dist
|
|
# here, tailored to the CorrelatedActionsEnv such that a2 depends on a1
|
|
ModelCatalog.register_custom_model(
|
|
"autoregressive_model",
|
|
TorchAutoregressiveActionModel
|
|
if args.framework == "torch"
|
|
else AutoregressiveActionModel,
|
|
)
|
|
ModelCatalog.register_custom_action_dist(
|
|
"binary_autoreg_dist",
|
|
TorchBinaryAutoregressiveDistribution
|
|
if args.framework == "torch"
|
|
else BinaryAutoregressiveDistribution,
|
|
)
|
|
|
|
# standard config
|
|
config = {
|
|
"env": CorrelatedActionsEnv,
|
|
"gamma": 0.5,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"framework": args.framework,
|
|
}
|
|
# use registered model and dist in config
|
|
if not args.no_autoreg:
|
|
config["model"] = {
|
|
"custom_model": "autoregressive_model",
|
|
"custom_action_dist": "binary_autoreg_dist",
|
|
}
|
|
|
|
# use stop conditions passed via CLI (or defaults)
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
# manual training loop using PPO without tune.run()
|
|
if args.no_tune:
|
|
if args.run != "PPO":
|
|
raise ValueError("Only support --run PPO with --no-tune.")
|
|
ppo_config = ppo.DEFAULT_CONFIG.copy()
|
|
ppo_config.update(config)
|
|
algo = ppo.PPO(config=ppo_config, env=CorrelatedActionsEnv)
|
|
# run manual training loop and print results after each iteration
|
|
for _ in range(args.stop_iters):
|
|
result = algo.train()
|
|
print(pretty_print(result))
|
|
# stop training if the target train steps or reward are reached
|
|
if (
|
|
result["timesteps_total"] >= args.stop_timesteps
|
|
or result["episode_reward_mean"] >= args.stop_reward
|
|
):
|
|
break
|
|
|
|
# run manual test loop: 1 iteration until done
|
|
print("Finished training. Running manual test/inference loop.")
|
|
env = CorrelatedActionsEnv(_)
|
|
obs = env.reset()
|
|
done = False
|
|
total_reward = 0
|
|
while not done:
|
|
a1, a2 = algo.compute_single_action(obs)
|
|
next_obs, reward, done, _ = env.step((a1, a2))
|
|
print(f"Obs: {obs}, Action: a1={a1} a2={a2}, Reward: {reward}")
|
|
obs = next_obs
|
|
total_reward += reward
|
|
print(f"Total reward in test episode: {total_reward}")
|
|
|
|
# run with Tune for auto env and Algorithm creation and TensorBoard
|
|
else:
|
|
results = tune.run(args.run, stop=stop, config=config, verbose=2)
|
|
|
|
if args.as_test:
|
|
print("Checking if learning goals were achieved")
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|