mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00
165 lines
6.5 KiB
Python
165 lines
6.5 KiB
Python
from ray.rllib.models.model import Model, restore_original_dimensions
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.models.tf.tf_action_dist import Categorical
|
|
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
|
from ray.rllib.models.tf.fcnet_v2 import FullyConnectedNetwork
|
|
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
|
|
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
|
|
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFC
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
from ray.rllib.offline import JsonReader
|
|
|
|
tf = try_import_tf()
|
|
torch, nn = try_import_torch()
|
|
|
|
|
|
class CustomLossModel(TFModelV2):
|
|
"""Custom model that adds an imitation loss on top of the policy loss."""
|
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config,
|
|
name):
|
|
super().__init__(obs_space, action_space, num_outputs, model_config,
|
|
name)
|
|
|
|
self.fcnet = FullyConnectedNetwork(
|
|
self.obs_space,
|
|
self.action_space,
|
|
num_outputs,
|
|
model_config,
|
|
name="fcnet")
|
|
self.register_variables(self.fcnet.variables())
|
|
|
|
@override(ModelV2)
|
|
def forward(self, input_dict, state, seq_lens):
|
|
# Delegate to our FCNet.
|
|
return self.fcnet(input_dict, state, seq_lens)
|
|
|
|
@override(ModelV2)
|
|
def custom_loss(self, policy_loss, loss_inputs):
|
|
# Create a new input reader per worker.
|
|
reader = JsonReader(
|
|
self.model_config["custom_model_config"]["input_files"])
|
|
input_ops = reader.tf_input_ops()
|
|
|
|
# Define a secondary loss by building a graph copy with weight sharing.
|
|
obs = restore_original_dimensions(
|
|
tf.cast(input_ops["obs"], tf.float32), self.obs_space)
|
|
logits, _ = self.forward({"obs": obs}, [], None)
|
|
|
|
# You can also add self-supervised losses easily by referencing tensors
|
|
# created during _build_layers_v2(). For example, an autoencoder-style
|
|
# loss can be added as follows:
|
|
# ae_loss = squared_diff(
|
|
# loss_inputs["obs"], Decoder(self.fcnet.last_layer))
|
|
print("FYI: You can also use these tensors: {}, ".format(loss_inputs))
|
|
|
|
# Compute the IL loss.
|
|
action_dist = Categorical(logits, self.model_config)
|
|
self.policy_loss = policy_loss
|
|
self.imitation_loss = tf.reduce_mean(
|
|
-action_dist.logp(input_ops["actions"]))
|
|
return policy_loss + 10 * self.imitation_loss
|
|
|
|
def custom_stats(self):
|
|
return {
|
|
"policy_loss": self.policy_loss,
|
|
"imitation_loss": self.imitation_loss,
|
|
}
|
|
|
|
|
|
class DeprecatedCustomLossModelV1(Model):
|
|
"""Model(V1) version of above custom-loss model."""
|
|
|
|
def _build_layers_v2(self, input_dict, num_outputs, options):
|
|
self.obs_in = input_dict["obs"]
|
|
with tf.variable_scope("shared", reuse=tf.AUTO_REUSE):
|
|
self.fcnet = FullyConnectedNetwork(input_dict, self.obs_space,
|
|
self.action_space, num_outputs,
|
|
options)
|
|
return self.fcnet.outputs, self.fcnet.last_layer
|
|
|
|
def custom_loss(self, policy_loss, loss_inputs):
|
|
# create a new input reader per worker
|
|
reader = JsonReader(self.options["custom_model_config"]["input_files"])
|
|
input_ops = reader.tf_input_ops()
|
|
|
|
# define a secondary loss by building a graph copy with weight sharing
|
|
obs = tf.cast(input_ops["obs"], tf.float32)
|
|
logits, _ = self._build_layers_v2({
|
|
"obs": restore_original_dimensions(obs, self.obs_space)
|
|
}, self.num_outputs, self.options)
|
|
|
|
# You can also add self-supervised losses easily by referencing tensors
|
|
# created during _build_layers_v2(). For example, an autoencoder-style
|
|
# loss can be added as follows:
|
|
# ae_loss = squared_diff(
|
|
# loss_inputs["obs"], Decoder(self.fcnet.last_layer))
|
|
print("FYI: You can also use these tensors: {}, ".format(loss_inputs))
|
|
|
|
# compute the IL loss
|
|
action_dist = Categorical(logits, self.options)
|
|
self.policy_loss = policy_loss
|
|
self.imitation_loss = tf.reduce_mean(
|
|
-action_dist.logp(input_ops["actions"]))
|
|
return policy_loss + 10 * self.imitation_loss
|
|
|
|
def custom_stats(self):
|
|
return {
|
|
"policy_loss": self.policy_loss,
|
|
"imitation_loss": self.imitation_loss,
|
|
}
|
|
|
|
|
|
class TorchCustomLossModel(TorchModelV2, nn.Module):
|
|
"""PyTorch version of the CustomLossModel above."""
|
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config,
|
|
name, input_files):
|
|
super().__init__(obs_space, action_space, num_outputs, model_config,
|
|
name)
|
|
nn.Module.__init__(self)
|
|
|
|
self.input_files = input_files
|
|
self.fcnet = TorchFC(
|
|
self.obs_space,
|
|
self.action_space,
|
|
num_outputs,
|
|
model_config,
|
|
name="fcnet")
|
|
|
|
@override(ModelV2)
|
|
def forward(self, input_dict, state, seq_lens):
|
|
# Delegate to our FCNet.
|
|
return self.fcnet(input_dict, state, seq_lens)
|
|
|
|
@override(ModelV2)
|
|
def custom_loss(self, policy_loss, loss_inputs):
|
|
# Create a new input reader per worker.
|
|
reader = JsonReader(self.input_files)
|
|
input_ops = reader.tf_input_ops()
|
|
|
|
# Define a secondary loss by building a graph copy with weight sharing.
|
|
obs = restore_original_dimensions(
|
|
tf.cast(input_ops["obs"], tf.float32), self.obs_space)
|
|
logits, _ = self.forward({"obs": obs}, [], None)
|
|
|
|
# You can also add self-supervised losses easily by referencing tensors
|
|
# created during _build_layers_v2(). For example, an autoencoder-style
|
|
# loss can be added as follows:
|
|
# ae_loss = squared_diff(
|
|
# loss_inputs["obs"], Decoder(self.fcnet.last_layer))
|
|
print("FYI: You can also use these tensors: {}, ".format(loss_inputs))
|
|
|
|
# Compute the IL loss.
|
|
action_dist = TorchCategorical(logits, self.model_config)
|
|
self.policy_loss = policy_loss
|
|
self.imitation_loss = torch.mean(
|
|
-action_dist.logp(input_ops["actions"]))
|
|
return policy_loss + 10 * self.imitation_loss
|
|
|
|
def custom_stats(self):
|
|
return {
|
|
"policy_loss": self.policy_loss,
|
|
"imitation_loss": self.imitation_loss,
|
|
}
|