ray/rllib/examples/custom_loss.py
2020-06-16 08:52:20 +02:00

67 lines
2 KiB
Python

"""Example of using custom_loss() with an imitation learning loss.
The default input file is too small to learn a good policy, but you can
generate new experiences for IL training as follows:
To generate experiences:
$ ./train.py --run=PG --config='{"output": "/tmp/cartpole"}' --env=CartPole-v0
To train on experiences with joint PG + IL loss:
$ python custom_loss.py --input-files=/tmp/cartpole
"""
import argparse
from pathlib import Path
import os
import ray
from ray import tune
from ray.rllib.examples.models.custom_loss_model import CustomLossModel, \
TorchCustomLossModel
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.framework import try_import_tf
tf = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument("--torch", action="store_true")
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument(
"--input-files",
type=str,
default=os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"../tests/data/cartpole_small"))
if __name__ == "__main__":
ray.init()
args = parser.parse_args()
# Bazel makes it hard to find files specified in `args` (and `data`).
# Look for them here.
if not os.path.exists(args.input_files):
# This script runs in the ray/rllib/examples dir.
rllib_dir = Path(__file__).parent.parent
input_dir = rllib_dir.absolute().joinpath(args.input_files)
args.input_files = str(input_dir)
ModelCatalog.register_custom_model(
"custom_loss", TorchCustomLossModel if args.torch else CustomLossModel)
config = {
"env": "CartPole-v0",
"num_workers": 0,
"model": {
"custom_model": "custom_loss",
"custom_model_config": {
"input_files": args.input_files,
},
},
"framework": "torch" if args.torch else "tf",
}
stop = {
"training_iteration": args.stop_iters,
}
tune.run("PG", config=config, stop=stop)