ray/rllib/policy/rnn_sequencing.py
2020-12-20 20:22:32 -05:00

310 lines
12 KiB
Python

"""RNN utils for RLlib.
The main trick here is that we add the time dimension at the last moment.
The non-LSTM layers of the model see their inputs as one flat batch. Before
the LSTM cell, we reshape the input to add the expected time dimension. During
postprocessing, we dynamically pad the experience batches so that this
reshaping is possible.
Note that this padding strategy only works out if we assume zero inputs don't
meaningfully affect the loss function. This happens to be true for all the
current algorithms: https://github.com/ray-project/ray/issues/2992
"""
import logging
import numpy as np
from typing import List, Optional
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.annotations import DeveloperAPI
from ray.rllib.utils.debug import summarize
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.typing import TensorType, ViewRequirementsDict
from ray.util import log_once
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
logger = logging.getLogger(__name__)
@DeveloperAPI
def pad_batch_to_sequences_of_same_size(
batch: SampleBatch,
max_seq_len: int,
shuffle: bool = False,
batch_divisibility_req: int = 1,
feature_keys: Optional[List[str]] = None,
view_requirements: Optional[ViewRequirementsDict] = None,
):
"""Applies padding to `batch` so it's choppable into same-size sequences.
Shuffles `batch` (if desired), makes sure divisibility requirement is met,
then pads the batch ([B, ...]) into same-size chunks ([B, ...]) w/o
adding a time dimension (yet).
Padding depends on episodes found in batch and `max_seq_len`.
Args:
batch (SampleBatch): The SampleBatch object. All values in here have
the shape [B, ...].
max_seq_len (int): The max. sequence length to use for chopping.
shuffle (bool): Whether to shuffle batch sequences. Shuffle may
be done in-place. This only makes sense if you're further
applying minibatch SGD after getting the outputs.
batch_divisibility_req (int): The int by which the batch dimension
must be dividable.
feature_keys (Optional[List[str]]): An optional list of keys to apply
sequence-chopping to. If None, use all keys in batch that are not
"state_in/out_"-type keys.
view_requirements (Optional[ViewRequirementsDict]): An optional
Policy ViewRequirements dict to be able to infer whether
e.g. dynamic max'ing should be applied over the seq_lens.
"""
if batch_divisibility_req > 1:
meets_divisibility_reqs = (
len(batch[SampleBatch.CUR_OBS]) % batch_divisibility_req == 0
# not multiagent
and max(batch[SampleBatch.AGENT_INDEX]) == 0)
else:
meets_divisibility_reqs = True
states_already_reduced_to_init = False
# RNN/attention net case. Figure out whether we should apply dynamic
# max'ing over the list of sequence lengths.
if "state_in_0" in batch or "state_out_0" in batch:
# Check, whether the state inputs have already been reduced to their
# init values at the beginning of each max_seq_len chunk.
if batch.seq_lens is not None and \
len(batch["state_in_0"]) == len(batch.seq_lens):
states_already_reduced_to_init = True
# RNN (or single timestep state-in): Set the max dynamically.
if view_requirements["state_in_0"].shift_from is None:
dynamic_max = True
# Attention Nets (state inputs are over some range): No dynamic maxing
# possible.
else:
dynamic_max = False
# Multi-agent case.
elif not meets_divisibility_reqs:
max_seq_len = batch_divisibility_req
dynamic_max = False
# Simple case: No RNN/attention net, nor do we need to pad.
else:
if shuffle:
batch.shuffle()
return
# RNN, attention net, or multi-agent case.
state_keys = []
feature_keys_ = feature_keys or []
for k, v in batch.items():
if k.startswith("state_in_"):
state_keys.append(k)
elif not feature_keys and not k.startswith("state_out_") and \
k not in ["infos", "seq_lens"] and isinstance(v, np.ndarray):
feature_keys_.append(k)
feature_sequences, initial_states, seq_lens = \
chop_into_sequences(
feature_columns=[batch[k] for k in feature_keys_],
state_columns=[batch[k] for k in state_keys],
episode_ids=batch.get(SampleBatch.EPS_ID),
unroll_ids=batch.get(SampleBatch.UNROLL_ID),
agent_indices=batch.get(SampleBatch.AGENT_INDEX),
seq_lens=getattr(batch, "seq_lens", batch.get("seq_lens")),
max_seq_len=max_seq_len,
dynamic_max=dynamic_max,
states_already_reduced_to_init=states_already_reduced_to_init,
shuffle=shuffle)
for i, k in enumerate(feature_keys_):
batch[k] = feature_sequences[i]
for i, k in enumerate(state_keys):
batch[k] = initial_states[i]
batch["seq_lens"] = np.array(seq_lens)
if log_once("rnn_ma_feed_dict"):
logger.info("Padded input for RNN/Attn.Nets/MA:\n\n{}\n".format(
summarize({
"features": feature_sequences,
"initial_states": initial_states,
"seq_lens": seq_lens,
"max_seq_len": max_seq_len,
})))
@DeveloperAPI
def add_time_dimension(padded_inputs: TensorType,
*,
max_seq_len: int,
framework: str = "tf",
time_major: bool = False):
"""Adds a time dimension to padded inputs.
Args:
padded_inputs (TensorType): a padded batch of sequences. That is,
for seq_lens=[1, 2, 2], then inputs=[A, *, B, B, C, C], where
A, B, C are sequence elements and * denotes padding.
max_seq_len (int): The max. sequence length in padded_inputs.
framework (str): The framework string ("tf2", "tf", "tfe", "torch").
time_major (bool): Whether data should be returned in time-major (TxB)
format or not (BxT).
Returns:
TensorType: Reshaped tensor of shape [B, T, ...] or [T, B, ...].
"""
# Sequence lengths have to be specified for LSTM batch inputs. The
# input batch must be padded to the max seq length given here. That is,
# batch_size == len(seq_lens) * max(seq_lens)
if framework in ["tf2", "tf", "tfe"]:
assert time_major is False, "time-major not supported yet for tf!"
padded_batch_size = tf.shape(padded_inputs)[0]
# Dynamically reshape the padded batch to introduce a time dimension.
new_batch_size = padded_batch_size // max_seq_len
new_shape = ([new_batch_size, max_seq_len] +
padded_inputs.get_shape().as_list()[1:])
return tf.reshape(padded_inputs, new_shape)
else:
assert framework == "torch", "`framework` must be either tf or torch!"
padded_batch_size = padded_inputs.shape[0]
# Dynamically reshape the padded batch to introduce a time dimension.
new_batch_size = padded_batch_size // max_seq_len
if time_major:
new_shape = (max_seq_len, new_batch_size) + padded_inputs.shape[1:]
else:
new_shape = (new_batch_size, max_seq_len) + padded_inputs.shape[1:]
return torch.reshape(padded_inputs, new_shape)
@DeveloperAPI
def chop_into_sequences(*,
feature_columns,
state_columns,
max_seq_len,
episode_ids=None,
unroll_ids=None,
agent_indices=None,
dynamic_max=True,
shuffle=False,
seq_lens=None,
states_already_reduced_to_init=False,
_extra_padding=0):
"""Truncate and pad experiences into fixed-length sequences.
Args:
episode_ids (List[EpisodeID]): List of episode ids for each step.
unroll_ids (List[UnrollID]): List of identifiers for the sample batch.
This is used to make sure sequences are cut between sample batches.
agent_indices (List[AgentID]): List of agent ids for each step. Note
that this has to be combined with episode_ids for uniqueness.
feature_columns (list): List of arrays containing features.
state_columns (list): List of arrays containing LSTM state values.
max_seq_len (int): Max length of sequences before truncation.
dynamic_max (bool): Whether to dynamically shrink the max seq len.
For example, if max len is 20 and the actual max seq len in the
data is 7, it will be shrunk to 7.
shuffle (bool): Whether to shuffle the sequence outputs.
_extra_padding (int): Add extra padding to the end of sequences.
Returns:
f_pad (list): Padded feature columns. These will be of shape
[NUM_SEQUENCES * MAX_SEQ_LEN, ...].
s_init (list): Initial states for each sequence, of shape
[NUM_SEQUENCES, ...].
seq_lens (list): List of sequence lengths, of shape [NUM_SEQUENCES].
Examples:
>>> f_pad, s_init, seq_lens = chop_into_sequences(
episode_ids=[1, 1, 5, 5, 5, 5],
unroll_ids=[4, 4, 4, 4, 4, 4],
agent_indices=[0, 0, 0, 0, 0, 0],
feature_columns=[[4, 4, 8, 8, 8, 8],
[1, 1, 0, 1, 1, 0]],
state_columns=[[4, 5, 4, 5, 5, 5]],
max_seq_len=3)
>>> print(f_pad)
[[4, 4, 0, 8, 8, 8, 8, 0, 0],
[1, 1, 0, 0, 1, 1, 0, 0, 0]]
>>> print(s_init)
[[4, 4, 5]]
>>> print(seq_lens)
[2, 3, 1]
"""
if seq_lens is None or len(seq_lens) == 0:
prev_id = None
seq_lens = []
seq_len = 0
unique_ids = np.add(
np.add(episode_ids, agent_indices),
np.array(unroll_ids, dtype=np.int64) << 32)
for uid in unique_ids:
if (prev_id is not None and uid != prev_id) or \
seq_len >= max_seq_len:
seq_lens.append(seq_len)
seq_len = 0
seq_len += 1
prev_id = uid
if seq_len:
seq_lens.append(seq_len)
seq_lens = np.array(seq_lens, dtype=np.int32)
assert sum(seq_lens) == len(feature_columns[0])
# Dynamically shrink max len as needed to optimize memory usage
if dynamic_max:
max_seq_len = max(seq_lens) + _extra_padding
feature_sequences = []
for f in feature_columns:
# Save unnecessary copy.
if not isinstance(f, np.ndarray):
f = np.array(f)
length = len(seq_lens) * max_seq_len
if f.dtype == np.object or f.dtype.type is np.str_:
f_pad = [None] * length
else:
# Make sure type doesn't change.
f_pad = np.zeros((length, ) + np.shape(f)[1:], dtype=f.dtype)
seq_base = 0
i = 0
for len_ in seq_lens:
for seq_offset in range(len_):
f_pad[seq_base + seq_offset] = f[i]
i += 1
seq_base += max_seq_len
assert i == len(f), f
feature_sequences.append(f_pad)
if states_already_reduced_to_init:
initial_states = state_columns
else:
initial_states = []
for s in state_columns:
# Skip unnecessary copy.
if not isinstance(s, np.ndarray):
s = np.array(s)
s_init = []
i = 0
for len_ in seq_lens:
s_init.append(s[i])
i += len_
initial_states.append(np.array(s_init))
if shuffle:
permutation = np.random.permutation(len(seq_lens))
for i, f in enumerate(feature_sequences):
orig_shape = f.shape
f = np.reshape(f, (len(seq_lens), -1) + f.shape[1:])
f = f[permutation]
f = np.reshape(f, orig_shape)
feature_sequences[i] = f
for i, s in enumerate(initial_states):
s = s[permutation]
initial_states[i] = s
seq_lens = seq_lens[permutation]
return feature_sequences, initial_states, seq_lens