mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
125 lines
3.3 KiB
Python
125 lines
3.3 KiB
Python
import logging
|
|
import os
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def check_framework(framework="tf"):
|
|
"""
|
|
Checks, whether the given framework is "valid", meaning, whether all
|
|
necessary dependencies are installed. Errors otherwise.
|
|
|
|
Args:
|
|
framework (str): Once of "tf", "torch", or None.
|
|
|
|
Returns:
|
|
str: The input framework string.
|
|
"""
|
|
if framework == "tf":
|
|
if tf is None:
|
|
raise ImportError("Could not import tensorflow.")
|
|
elif framework == "torch":
|
|
if torch is None:
|
|
raise ImportError("Could not import torch.")
|
|
else:
|
|
assert framework is None
|
|
return framework
|
|
|
|
|
|
def try_import_tf(error=False):
|
|
"""
|
|
Args:
|
|
error (bool): Whether to raise an error if tf cannot be imported.
|
|
|
|
Returns:
|
|
The tf module (either from tf2.0.compat.v1 OR as tf1.x.
|
|
"""
|
|
# TODO(sven): Make sure, these are reset after each test case
|
|
# that uses them.
|
|
if "RLLIB_TEST_NO_TF_IMPORT" in os.environ:
|
|
logger.warning("Not importing TensorFlow for test purposes")
|
|
return None
|
|
|
|
try:
|
|
if "TF_CPP_MIN_LOG_LEVEL" not in os.environ:
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
import tensorflow.compat.v1 as tf
|
|
tf.logging.set_verbosity(tf.logging.ERROR)
|
|
tf.disable_v2_behavior()
|
|
return tf
|
|
except ImportError:
|
|
try:
|
|
import tensorflow as tf
|
|
return tf
|
|
except ImportError as e:
|
|
if error:
|
|
raise e
|
|
return None
|
|
|
|
|
|
def try_import_tfp(error=False):
|
|
"""
|
|
Args:
|
|
error (bool): Whether to raise an error if tfp cannot be imported.
|
|
|
|
Returns:
|
|
The tfp module.
|
|
"""
|
|
if "RLLIB_TEST_NO_TF_IMPORT" in os.environ:
|
|
logger.warning("Not importing TensorFlow Probability for test "
|
|
"purposes.")
|
|
return None
|
|
|
|
try:
|
|
import tensorflow_probability as tfp
|
|
return tfp
|
|
except ImportError as e:
|
|
if error:
|
|
raise e
|
|
return None
|
|
|
|
|
|
def try_import_torch(error=False):
|
|
"""
|
|
Args:
|
|
error (bool): Whether to raise an error if torch cannot be imported.
|
|
|
|
Returns:
|
|
tuple: torch AND torch.nn modules.
|
|
"""
|
|
if "RLLIB_TEST_NO_TORCH_IMPORT" in os.environ:
|
|
logger.warning("Not importing Torch for test purposes.")
|
|
return None, None
|
|
|
|
try:
|
|
import torch
|
|
import torch.nn as nn
|
|
return torch, nn
|
|
except ImportError as e:
|
|
if error:
|
|
raise e
|
|
return None, None
|
|
|
|
|
|
def get_variable(value, framework="tf", tf_name="unnamed-variable"):
|
|
"""
|
|
Args:
|
|
value (any): The initial value to use. In the non-tf case, this will
|
|
be returned as is.
|
|
framework (str): One of "tf", "torch", or None.
|
|
tf_name (str): An optional name for the variable. Only for tf.
|
|
|
|
Returns:
|
|
any: A framework-specific variable (tf.Variable or python primitive).
|
|
"""
|
|
if framework == "tf":
|
|
import tensorflow as tf
|
|
return tf.compat.v1.get_variable(tf_name, initializer=value)
|
|
# torch or None: Return python primitive.
|
|
return value
|
|
|
|
|
|
# This call should never happen inside a module's functions/classes
|
|
# as it would re-disable tf-eager.
|
|
tf = try_import_tf()
|
|
torch, _ = try_import_torch()
|