ray/rllib/agents/ddpg/ddpg.py

236 lines
10 KiB
Python

from ray.rllib.agents.trainer import with_common_config
from ray.rllib.agents.dqn.dqn import GenericOffPolicyTrainer
from ray.rllib.agents.ddpg.ddpg_policy import DDPGTFPolicy
from ray.rllib.utils.schedules import ConstantSchedule, LinearSchedule
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = with_common_config({
# === Twin Delayed DDPG (TD3) and Soft Actor-Critic (SAC) tricks ===
# TD3: https://spinningup.openai.com/en/latest/algorithms/td3.html
# In addition to settings below, you can use "exploration_noise_type" and
# "exploration_gauss_act_noise" to get IID Gaussian exploration noise
# instead of OU exploration noise.
# twin Q-net
"twin_q": False,
# delayed policy update
"policy_delay": 1,
# target policy smoothing
# (this also replaces OU exploration noise with IID Gaussian exploration
# noise, for now)
"smooth_target_policy": False,
# gaussian stddev of target action noise for smoothing
"target_noise": 0.2,
# target noise limit (bound)
"target_noise_clip": 0.5,
# === Evaluation ===
# Evaluate with epsilon=0 every `evaluation_interval` training iterations.
# The evaluation stats will be reported under the "evaluation" metric key.
# Note that evaluation is currently not parallelized, and that for Ape-X
# metrics are already only reported for the lowest epsilon workers.
"evaluation_interval": None,
# Number of episodes to run per evaluation period.
"evaluation_num_episodes": 10,
# === Model ===
# Apply a state preprocessor with spec given by the "model" config option
# (like other RL algorithms). This is mostly useful if you have a weird
# observation shape, like an image. Disabled by default.
"use_state_preprocessor": False,
# Postprocess the policy network model output with these hidden layers. If
# use_state_preprocessor is False, then these will be the *only* hidden
# layers in the network.
"actor_hiddens": [400, 300],
# Hidden layers activation of the postprocessing stage of the policy
# network
"actor_hidden_activation": "relu",
# Postprocess the critic network model output with these hidden layers;
# again, if use_state_preprocessor is True, then the state will be
# preprocessed by the model specified with the "model" config option first.
"critic_hiddens": [400, 300],
# Hidden layers activation of the postprocessing state of the critic.
"critic_hidden_activation": "relu",
# N-step Q learning
"n_step": 1,
# === Exploration ===
# Turns on annealing schedule for exploration noise. Exploration is
# annealed from 1.0 to exploration_final_eps over schedule_max_timesteps
# scaled by exploration_fraction. Original DDPG and TD3 papers do not
# anneal noise, so this is False by default.
"exploration_should_anneal": False,
# Max num timesteps for annealing schedules.
"schedule_max_timesteps": 100000,
# Number of env steps to optimize for before returning
"timesteps_per_iteration": 1000,
# Fraction of entire training period over which the exploration rate is
# annealed
"exploration_fraction": 0.1,
# Final scaling multiplier for action noise (initial is 1.0)
"exploration_final_scale": 0.02,
# valid values: "ou" (time-correlated, like original DDPG paper),
# "gaussian" (IID, like TD3 paper)
"exploration_noise_type": "ou",
# OU-noise scale; this can be used to scale down magnitude of OU noise
# before adding to actions (requires "exploration_noise_type" to be "ou")
"exploration_ou_noise_scale": 0.1,
# theta for OU
"exploration_ou_theta": 0.15,
# sigma for OU
"exploration_ou_sigma": 0.2,
# gaussian stddev of act noise for exploration (requires
# "exploration_noise_type" to be "gaussian")
"exploration_gaussian_sigma": 0.1,
# If True parameter space noise will be used for exploration
# See https://blog.openai.com/better-exploration-with-parameter-noise/
"parameter_noise": False,
# Until this many timesteps have elapsed, the agent's policy will be
# ignored & it will instead take uniform random actions. Can be used in
# conjunction with learning_starts (which controls when the first
# optimization step happens) to decrease dependence of exploration &
# optimization on initial policy parameters. Note that this will be
# disabled when the action noise scale is set to 0 (e.g during evaluation).
"pure_exploration_steps": 1000,
# Extra configuration that disables exploration.
"evaluation_config": {
"exploration_fraction": 0,
"exploration_final_eps": 0,
},
# === Replay buffer ===
# Size of the replay buffer. Note that if async_updates is set, then
# each worker will have a replay buffer of this size.
"buffer_size": 50000,
# If True prioritized replay buffer will be used.
"prioritized_replay": True,
# Alpha parameter for prioritized replay buffer.
"prioritized_replay_alpha": 0.6,
# Beta parameter for sampling from prioritized replay buffer.
"prioritized_replay_beta": 0.4,
# Time steps over which the beta parameter is annealed.
"prioritized_replay_beta_annealing_timesteps": 20000,
# Final value of beta
"final_prioritized_replay_beta": 0.4,
# Epsilon to add to the TD errors when updating priorities.
"prioritized_replay_eps": 1e-6,
# Whether to LZ4 compress observations
"compress_observations": False,
# === Optimization ===
# Learning rate for the critic (Q-function) optimizer.
"critic_lr": 1e-3,
# Learning rate for the actor (policy) optimizer.
"actor_lr": 1e-3,
# Update the target network every `target_network_update_freq` steps.
"target_network_update_freq": 0,
# Update the target by \tau * policy + (1-\tau) * target_policy
"tau": 0.002,
# If True, use huber loss instead of squared loss for critic network
# Conventionally, no need to clip gradients if using a huber loss
"use_huber": False,
# Threshold of a huber loss
"huber_threshold": 1.0,
# Weights for L2 regularization
"l2_reg": 1e-6,
# If not None, clip gradients during optimization at this value
"grad_norm_clipping": None,
# How many steps of the model to sample before learning starts.
"learning_starts": 1500,
# Update the replay buffer with this many samples at once. Note that this
# setting applies per-worker if num_workers > 1.
"sample_batch_size": 1,
# Size of a batched sampled from replay buffer for training. Note that
# if async_updates is set, then each worker returns gradients for a
# batch of this size.
"train_batch_size": 256,
# === Parallelism ===
# Number of workers for collecting samples with. This only makes sense
# to increase if your environment is particularly slow to sample, or if
# you're using the Async or Ape-X optimizers.
"num_workers": 0,
# Whether to use a distribution of epsilons across workers for exploration.
"per_worker_exploration": False,
# Whether to compute priorities on workers.
"worker_side_prioritization": False,
# Prevent iterations from going lower than this time span
"min_iter_time_s": 1,
})
# __sphinx_doc_end__
# yapf: enable
def make_exploration_schedule(config, worker_index):
# Modification of DQN's schedule to take into account
# `exploration_ou_noise_scale`
if config["per_worker_exploration"]:
assert config["num_workers"] > 1, "This requires multiple workers"
if worker_index >= 0:
# FIXME: what do magic constants mean? (0.4, 7)
max_index = float(config["num_workers"] - 1)
exponent = 1 + worker_index / max_index * 7
return ConstantSchedule(0.4**exponent)
else:
# local ev should have zero exploration so that eval rollouts
# run properly
return ConstantSchedule(0.0)
elif config["exploration_should_anneal"]:
return LinearSchedule(
schedule_timesteps=int(config["exploration_fraction"] *
config["schedule_max_timesteps"]),
initial_p=1.0,
final_p=config["exploration_final_scale"])
else:
# *always* add exploration noise
return ConstantSchedule(1.0)
def setup_ddpg_exploration(trainer):
trainer.exploration0 = make_exploration_schedule(trainer.config, -1)
trainer.explorations = [
make_exploration_schedule(trainer.config, i)
for i in range(trainer.config["num_workers"])
]
def update_worker_explorations(trainer):
global_timestep = trainer.optimizer.num_steps_sampled
exp_vals = [trainer.exploration0.value(global_timestep)]
trainer.workers.local_worker().foreach_trainable_policy(
lambda p, _: p.set_epsilon(exp_vals[0]))
for i, e in enumerate(trainer.workers.remote_workers()):
exp_val = trainer.explorations[i].value(global_timestep)
e.foreach_trainable_policy.remote(lambda p, _: p.set_epsilon(exp_val))
exp_vals.append(exp_val)
trainer.train_start_timestep = global_timestep
trainer.exploration_infos = exp_vals
def add_pure_exploration_phase(trainer):
global_timestep = trainer.optimizer.num_steps_sampled
pure_expl_steps = trainer.config["pure_exploration_steps"]
if pure_expl_steps:
# tell workers whether they should do pure exploration
only_explore = global_timestep < pure_expl_steps
trainer.workers.local_worker().foreach_trainable_policy(
lambda p, _: p.set_pure_exploration_phase(only_explore))
for e in trainer.workers.remote_workers():
e.foreach_trainable_policy.remote(
lambda p, _: p.set_pure_exploration_phase(only_explore))
update_worker_explorations(trainer)
def validate_config(config):
# PyTorch check.
if config["use_pytorch"]:
raise ValueError("DDPG does not support PyTorch yet! Use tf instead.")
DDPGTrainer = GenericOffPolicyTrainer.with_updates(
name="DDPG",
default_config=DEFAULT_CONFIG,
default_policy=DDPGTFPolicy,
validate_config=validate_config,
before_init=setup_ddpg_exploration,
before_train_step=add_pure_exploration_phase)